Giáo trình Toán kinh tế (Phần 1) - Học viện Bưu chính viến thông
Khái niệm tối ưu: dùng để chỉ mức độ khả dĩ đạt tới cao nhất của mục tiêu do một chủ thể đề ra
và được xét trong những điều kiện nhất định.
- Với mỗi sự vật, mục tiêu là một khái niệm mang tính chủ quan, tùy thuộc vào mục đích riêng
của chủ thể. Thí dụ, khi nghiên cứu mạng viễn thông, người sử dụng lấy chất lượng dịch vụ làm
mục tiêu. Trái lại, người quản lý khái thác mạng lấy hiệu suất sử dụng tài nguyên làm mục tiêu.
- Điều kiện cụ thể gồm toàn bộ những yếu tố tác động trực tiếp đến mục tiêu của chủ thể. Thí dụ
khi lập kế hoạch sản xuất tối ưu, các điều kiện ảnh hưởng trực tiếp đến mục tiêu là tình trạng máy
móc thiết bị, khả năng cung cấp các yếu tố đầu vào, khả năng tiêu thụ hàng hóa trên thị
trường,vv...
Tối ưu hóa: là quá trình đi đến cái "tốt nhất", là sự vận động từ chưa tốt đến tốt hơn, từ tốt hơn
đến tốt nhất. Phương pháp tối ưu hóa là các biện pháp, các thuật toán, các kỹ xảo, các thao
tácv.v... nhằm đi đến điểm tối ưu. Phương pháp tối ưu hóa là công cụ của tối ưu hóa. Do tính đa
dạng và phức tạp của các vấn đề tối ưu hóa trong thực tế, không tồn tại một phương pháp vạn
năng hữu hiệu để giải quyết vấn đề để tìm lời giải tối ưu trong mọi trường hợp.
● Tối ưu hóa là quy luật khách quan của giới tự nhiên và xã hội, gắn liền với quá trình tiến hóa.
Qui luật chọn lọc tự nhiên chỉ ra rằng, chỉ có những sinh vật nào thích nghi tốt nhất với điều kiện
môi trường thì mới có khả năng tồn tại và phát tiển. Cái cây luôn luôn phải vươn lên để nhận được
ánh sáng mặt trời nhiều nhất. Con cá có hình dáng thích hợp để bơi thuận tiện nhất. Nhà kinh
doanh luôn luôn phải làm cho lợi nhuận của danh nghiệp lớn nhất. Nhà chính trị luôn luôn tìm
cách điều hành xã hội phát triển nhanh nhất và ổn định nhất.
● Đối với các quá trình phức tạp, mục tiêu cuối cùng của tối ưu hóa thường không rõ ràng ngay
từ đầu. Thứ nhất, khái niệm "tốt nhất" phụ thuộc vào nhận thức chủ quan của con người. Thứ hai,
sự vật luôn luôn biến đổi không ngừng theo thời gian khiến cho các điều kiện luôn luôn thay đổi.
Một đối tượng đang là "tốt nhất", khi điều kiện thay đổi có thể trở trhành "xấu nhất". Vì vậy, đối
với quá trình phức tạp, mục tiêu tối ưu hóa thường được hiệu chỉnh theo thời gian để có ý nghĩa
thiết thực. Điều này có thể được nhận thấy rất rõ trong lý thuyết kinh tế học, trong điều khiển tự
thích nghi,...
● Tối ưu hóa có tính phân thân, nghĩa là nó tác động vào chính nó. Nói cách khác, các quá trình
tối ưu hóa và các phương pháp tối ưu hóa cũng phải có tính tối ưu khi đặt nó vào các điều kiện và
hoàn cảnh cụ thể của vấn đề mà chủ thể đặt ra để giải quyết.
● Các phương pháp tối ưu thường được nghiên cứu dưới dạng mô hình toán học, đó là các
phương trình, bất phương trình, phương trình vi phân, tích phân,...
và được xét trong những điều kiện nhất định.
- Với mỗi sự vật, mục tiêu là một khái niệm mang tính chủ quan, tùy thuộc vào mục đích riêng
của chủ thể. Thí dụ, khi nghiên cứu mạng viễn thông, người sử dụng lấy chất lượng dịch vụ làm
mục tiêu. Trái lại, người quản lý khái thác mạng lấy hiệu suất sử dụng tài nguyên làm mục tiêu.
- Điều kiện cụ thể gồm toàn bộ những yếu tố tác động trực tiếp đến mục tiêu của chủ thể. Thí dụ
khi lập kế hoạch sản xuất tối ưu, các điều kiện ảnh hưởng trực tiếp đến mục tiêu là tình trạng máy
móc thiết bị, khả năng cung cấp các yếu tố đầu vào, khả năng tiêu thụ hàng hóa trên thị
trường,vv...
Tối ưu hóa: là quá trình đi đến cái "tốt nhất", là sự vận động từ chưa tốt đến tốt hơn, từ tốt hơn
đến tốt nhất. Phương pháp tối ưu hóa là các biện pháp, các thuật toán, các kỹ xảo, các thao
tácv.v... nhằm đi đến điểm tối ưu. Phương pháp tối ưu hóa là công cụ của tối ưu hóa. Do tính đa
dạng và phức tạp của các vấn đề tối ưu hóa trong thực tế, không tồn tại một phương pháp vạn
năng hữu hiệu để giải quyết vấn đề để tìm lời giải tối ưu trong mọi trường hợp.
● Tối ưu hóa là quy luật khách quan của giới tự nhiên và xã hội, gắn liền với quá trình tiến hóa.
Qui luật chọn lọc tự nhiên chỉ ra rằng, chỉ có những sinh vật nào thích nghi tốt nhất với điều kiện
môi trường thì mới có khả năng tồn tại và phát tiển. Cái cây luôn luôn phải vươn lên để nhận được
ánh sáng mặt trời nhiều nhất. Con cá có hình dáng thích hợp để bơi thuận tiện nhất. Nhà kinh
doanh luôn luôn phải làm cho lợi nhuận của danh nghiệp lớn nhất. Nhà chính trị luôn luôn tìm
cách điều hành xã hội phát triển nhanh nhất và ổn định nhất.
● Đối với các quá trình phức tạp, mục tiêu cuối cùng của tối ưu hóa thường không rõ ràng ngay
từ đầu. Thứ nhất, khái niệm "tốt nhất" phụ thuộc vào nhận thức chủ quan của con người. Thứ hai,
sự vật luôn luôn biến đổi không ngừng theo thời gian khiến cho các điều kiện luôn luôn thay đổi.
Một đối tượng đang là "tốt nhất", khi điều kiện thay đổi có thể trở trhành "xấu nhất". Vì vậy, đối
với quá trình phức tạp, mục tiêu tối ưu hóa thường được hiệu chỉnh theo thời gian để có ý nghĩa
thiết thực. Điều này có thể được nhận thấy rất rõ trong lý thuyết kinh tế học, trong điều khiển tự
thích nghi,...
● Tối ưu hóa có tính phân thân, nghĩa là nó tác động vào chính nó. Nói cách khác, các quá trình
tối ưu hóa và các phương pháp tối ưu hóa cũng phải có tính tối ưu khi đặt nó vào các điều kiện và
hoàn cảnh cụ thể của vấn đề mà chủ thể đặt ra để giải quyết.
● Các phương pháp tối ưu thường được nghiên cứu dưới dạng mô hình toán học, đó là các
phương trình, bất phương trình, phương trình vi phân, tích phân,...
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình Toán kinh tế (Phần 1) - Học viện Bưu chính viến thông", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- giao_trinh_toan_kinh_te_phan_1_hoc_vien_buu_chinh_vien_thong.pdf
Nội dung text: Giáo trình Toán kinh tế (Phần 1) - Học viện Bưu chính viến thông
- Bài giảng toán kinh tế Chương 1: Mô hình toán kinh tế Cùng là sản phẩm của quá trình mô hình hoá nhưng mô hình toán kinh tế có những điểm khác biệt so với các loại mô hình khác. Quan sát mô hình MHIA trong thí dụ 1.1 chúng ta có thể thấy rõ điều này. Mô hình chứa một số yếu tố mang tính định lượng (S, D, p, S’, D’) và các hệ thức toán học giữa chúng (các phương trình và bất phương trình). Đây là đặc trưng cơ bản, là hình thức kết cấu của mô hình toán kinh tế, do đó ta có thể dung đặc trưng này để hình dung một cách cụ thể hơn về mô hình toán kinh tế so với khái niệm đã giới thiệu ở mục trước. Ta sẽ quan niệm mô hình toán kinh tế là một tập các biến số và các hệ thức toán học liên hệ giữa chúng nhằm diễn tả đối tượng liên quan tới sự kiện, hiện tượng kinh tế. Chúng ta sẽ phân tích chi tiết cấu trúc này của mô hình để định rõ vai trò của từng bộ phận cấu thành nhằm trợ giúp cho quá trình mô hình hoá. ● Các biến số của mô hình. Để mô tả đối tượng và phân tích định lượng các hiện tượng và vấn đề kinh tế liên quan tới đối tượng, ta cần xem xét và lựa chọn một số yếu tố cơ bản đặc trưng cho đối tượng và lượng hoá chúng. Các yếu tố này gọi là các đại lượng, các biến số (kinh tế) của mô hình. Chúng có thể thay đổi giá trị trong phạm vi nhất định. Nhờ được lượng hoá nên ta có thể quan sát, đo lường và thực hiện tính toán giữa các biến số này. Tuỳ thuộc vào bản chất của các biến, mục đích nghiên cứu, phân tích cũng như khả năng về nguồn dữ liệu liên quan, các biến số kinh tế trong một mô hình được phân loại thành: - Biến nội sinh (biến được giải thích): đó là các biến về bản chất chúng phản ánh, thể hiện trực tiếp sự kiện, hiện tượng kinh tế và giá trị của chúng phụ thuộc giá trị của các biến khác có trong mô hình. Nếu biết giá trị của các biến khác trong mô hình, ta có thể xác định giá trị cụ thể bằng số của các biến nội sinh bằng cách giải các hệ thức. Trong mô hình MHIA, chúng ta thấy các biến S, D, p, S’, D; đều trực tiếp phản ánh trạng thái của thị trường và chúng phụ thuộc lẫn nhau do đó chúng đều là các biến nội sinh. - Biến ngoại sinh (biến giải thích) Đó là các biến độc lập với các biến khác trong mô hình, giá trị của chúng được xem là tồn tại bên ngoài mô hình. Trong mô hình MHIB, các biến M, T có giá trị không phụ thuộc vào các biến khác do đó chúng được gọi là biến ngoại sinh. Xét theo đặc điểm cấu trúc toán học, một mô hình có tất cả các biến đều là nội sinh gọi là mô hình đóng, thí dụ, mô hình MHIA; mô hình có biến nội sinh và ngoại sinh gọi là mô hình mở, thí dụ mô hình MHIB là mô hình mở. - Tham số (thông số): Đó là cácPTIT biến số mà trong phạm vi nghiên cứu đối tượng chúng thể hiện các đặc trưng tương đối ổn định, ít biến động hoặc có thể là giả thiết là như vậy của đối tượng. Các tham số của mô hình phản ánh xu hướng, mức độ ảnh hưởng của các biến tới biến nội sinh. Thí dụ, nếu trong mô hình MHIB ta có S = αpβTγ, khi này các biến α, β, γ là các tham số của mô hình vì giá trị của chúng quyết định mức độ tác động của biến ngoại sinh T tới biến nội sinh S, D, S’, D’. Lưu ý rằng cùng một biến số, trong các mô hình khác nhau có thể đóng vai trò khác nhau, thậm chí trong cùng một mô hình nó cũng có thể có vai trò khác nhau do mục đích sử dụng mô hình khác nhau. ● Mối liên hệ giữa các biến số - Các phương trình của mô hình. Các quan hệ kinh tế nảy sinh trong quá trình hoạt động kinh tế giữa các chủ thể kinh tế (tác nhân kinh tế), giữa chủ thể với Nhà nước, giữa các khu vực, các bộ phận của nền kinh tế và giữa nền kinh tế của các quốc gia, tạo ra quan hệ giữa các biến số liên quan. Các mối quan hệ này là sự phản ánh, thể hiện tác động của các quy luật trong hoạt động kinh tế. Chúng ta có thể dùng các 7
- Bài giảng toán kinh tế Chương 1: Mô hình toán kinh tế biểu thức, các hệ thức toán học một cách thích hợp từ đơn giản đến phức tạp để thể hiện mối quan hệ giữa các biến trong mô hình. Hệ thức thường được sử dụng phổ biến là phương trình hoặc bất phương trình. - Phương trình của mô hình có thể tồn tại dưới dạng hàm số, phương trình đại số, phương trình vi phân hoặc sai phân. Phương trình định nghĩa (đồng nhất thức): Thể hiện quan hệ định nghĩa giữa các biến số hoặc giữa hai biểu thức ở hai vế của phương trình. Thí dụ: Lợi nhuận (Π) được định nghĩa là hiệu số giữa tổng doanh thu (TR) và tổng chi phí (TC) và được tính trtong một khoảng thời gian nhất định; ta có thể viết: Π = TR – TC, phương trình này là một đồng nhất thức. Một thí dụ khác, xuất khẩu ròng của một quốc gia (NX) là khoản chênh lệch giữa xuất khẩu (EX) và nhập khẩu (IM) của quốc gia đó trong một thời kỳ nhất định. Thông thường xuất, nhập khẩu phụ thuộc vào thu nhập (Y), mức giá cả (p), tỷ giá hối đoái (ER), do đó theo định nghĩa của xuất khẩu ròng, ta có thể viết: NX = EX(Y, p, ER) – IM(Y, p, ER). Trong mô hình MHIA, các phương trình S’(p) = dS/dp, D’(p) = dD/dp cũng là các phương trình định nghĩa. Phương trình hành vi: Mô tả quan hệ giữa các biến do tác động của các quy luật hoặc giả định. Từ phương trình hành vi ta có thể biết sự biến động của biến nội sinh. – “hành vi” của biến này – khi các biến khác thay đổi giá trị. Sự biến động này có thể ám chỉ sự phản ứng trong hành vi của con người (thí dụ: trong hành vi tiêu dùng, nếu thu nhập tăng lên thì người tiêu dùng sẽ chi tiêu nhiều hơn), nhưng cũng có thể chỉ là thể hiện quy luật về mối quan hệ phụ thuộc lẫn nhau giữa các biến số. Trong mô hình MHIA, các phương trình S = S(p), D = d(p) là các phương trình hành vi vì chúng thể hiện sự phản ứng của người sản xuất và người tiêu dùng trước sự thay đổi của giá cả. Phương trình điều kiện: mô tả quan hệ giữa các biến số trong các tình huống có điều kiện, ràng buộc cụ thể mà mô hình đề cập. Trong mô hình MHIA, phương trình S = D là phương trình điều kiện cân bằng thị trường. - Bất phương trình thường là mô tả quan hệ giữa các biến số có liên quan với nhau và trong điều kiện cụ thể. Trong mô hình bài toán lập kế hoạch thì điều kiện ràng buộc là các bất phương trình thể hiện việc sử dụng các yếu tố đầu vào của quá trình sản xuất không vượt quá khả năng của doanh nghiệp. 1.2.4 Phân loại mô hình toán kinh tế a) Phân loại mô hình theo đặc điểm cấu trúc và công cụ toán học sử dụng - Mô hình tối ưu: phản ánh PTITsự lựa chọn cách thức hoạt động nhằm tối ưu hoá một hoặc một số chỉ tiêu định trước. Cấu trúc cơ bản của mô hình là bài toán tối ưu có thể bao gồm bài toán toán quy hoạch, bài toán điều khiển tối ưu. Khi phân tích mô hình tối ưu, công cụ chính được sử dụng là các phương pháp tối ưu trong toán học. - Mô hình cân bằng: Trong mô hình liên quan đến đối tượng, nếu quan hệ giữa các biến số được thiết lập, giá trị của các biến nội sinh được xác định và chúng không thay đổi nếu giá trị của biến ngoại sinh, tham số cho trước là cố định thì đối tượng được gọi là ở trạng thái cân bằng. Trong nhóm mô hình này bao gồm các mô hình cân bằng thị trường, mô hình cân đối. Công cụ thường sử dụng để phân tích mô hình là các phương pháp giải hệ phương trình, tìm điểm bất động. Lưu ý rằng có nhiều chuyên gia toán kinh tế với quan niệm tổng quát về trạng thái cân bằng coi nhóm mô hình tối ưu thuộc lớp mô hình cân bằng. Tuy nhiên theo đặc điểm cấu trúc toán học, chúng ta sẽ tách riêng hai nhóm này. - Mô hình tất định, mô hình ngẫu nhiên: Mô hình với các biến là tất định (phi ngẫu nhiên) gọi là mô hình tất định, nếu mô hình có chứa biến ngẫu nhiên thì gọi là mô hình ngẫu nhiên. 8
- Bài giảng toán kinh tế Chương 1: Mô hình toán kinh tế - Mô hình toán kinh tế và mô hình kinh tế lượng: Với quan niệm trình bày ở trên về mô hình toán kinh tế, về mặt hình thức, ta có thể xem các mô hình kinh tế lượng cũng là các mô hình toán kinh tế và thuộc lớp mô hình ngẫu nhiên. Tuy nhiên, trong thực tế người ta thường phân biệt chúng vì lý do kỹ thuật phân tích và ứng dụng. Đối với các mô hình toán kinh tế, các tham số của mô hình hoặc là cho trước hoặc được giả định rằng đã biết và khi phân tích ta sử dụng các phương pháp toán học thuần tuý; trong khi đó đối với mô hình kinh tế lượng thì các tham số chính là các ẩn số, giá trị của chúng được xác định nhờ các phương pháp suy đoán thống kê căn cứ vào giá trị quá khứ của các biến khác trong mô hình. - Mô hình tĩnh (theo thời gian), mô hình động: mô hình có các biến mô tả hiện tượng kinh tế tồn tại ở một thời điểm hay một khoảng thời gian đã xác định (thời gian cố định) gọi là mô hình tĩnh. Mô hình mô tả hiện tượng kinh tế trong đó các biến phụ thuộc vào thời gian gọi là mô hình động. b) Phân loại mô hình theo quy mô yếu tố, theo thời hạn: Theo quy mô của các yếu tố ta có các mô hình: - Mô hình vĩ mô: mô tả các hiện tượng kinh tế liên quan đến một nền kinh tế, một khu vực kinh tế gồm một số quốc gia,. - Mô hình vi mô: Mô tả một chủ thể kinh tế, hoặc những hiện tượng kinh tế với các yếu tố ảnh hưởng trong phạm vi hẹp và ở mức độ chi tiết, cụ thể. Theo thời hạn mà mô hình đề cập ta có: Mô hình ngắn hạn (tác nghiệp), mô hình dài hạn (chiến lược). 1.2.5 Nội dung của phương pháp mô hình trong nghiên cứu và phân tích kinh tế. a) Nội dung cơ bản của phương pháp mô hình; Để áp dụng phương pháp mô hình, trong đó sử dụng mô hình toán kinh tế làm công cụ nghiên cứu, phân tích các vấn đề, các hiện tượng kinh tế, ta tiến hành các bước sau: ● Đặt vấn đề Cần diễn đạt rõ vấn đề, hiện tượng nào trong hoạt động kinh tế mà chúng ta quan tâm, mục đích là gì? Các nguồn lực có thể huy động để tham gia nghiên cứu (nhân lực, tài chính, thông tin, thời gian, ) ● Mô hình hoá đối tượng Sau khi xác định được mục đích, yêu cầu cần nghiên cứu, ta tiến hành quá trình mô hình hoá đối tượng liên quan đến vấn đề. Về cơ bản, quá trình này bao gồm: - Xác định các yếu tố, sự kiệnPTIT cần xem xét cùng các mối liên hệ trực tiếp giữa chúng mà ta có thể cảm nhận bằng trực quan hoặc căn cứ vào cơ sở lý luận đã lựa chọn. - Lượng hoá các yếu tố này, coi chúng là các biến của mô hình. Trong thực tế có nhiều yếu tố vốn dĩ mang bản chất định lượng vì vậy vấn đề chỉ là xác định đơn vị đo lường thích hợp; tuy nhiên có những yếu tố định tính mà nhiều khi ta cần sử dụng các phương pháp trong thống kê, kinh tế lượng để lượng hoá chúng. - Xét vai trò của các biến số và thiết lập các hệ thức toán học – chủ yếu là các phương trình và bất phương trình – mô tả quan hệ giữa các biến. Đây là phần quan trọng và khó khăn nhất của quá trình mô hình hoá. Để có thể làm tốt công việc này ta cần dựa vào cơ sở lý luận đủ mạnh và đáng tin cậy cả về phương diện kinh tế lẫn toán học. Kết thúc công việc này ta sẽ có được mô hình ban đầu. ● Phân tích mô hình 9
- Bài giảng toán kinh tế Chương 1: Mô hình toán kinh tế Sử dụng phương pháp phân tích mô hình (được trình bày chi tiết ở phần sau) để phân tích. Kết quả phân tích có thể dùng để hiệu chỉnh mô hình (thay đổi vai trò của biến, thêm, bớt biến, thay đổi định dạng phương trình hoặc bất phương trình, ) cho phù hợp với thực tiễn. ● Giải thích kết quả Dựa vào kết quả phân tích mô hình ta sẽ đưa ra giải đáp cho vấn đề cần nghiên cứu. Nếu ta thay đổi vấn đề, hoặc mục đích nghiên cứu nhưng đối tượng liên quan không thay đổi thì vẫn có thể sử dụng mô hình sẵn có. b) Thí dụ: Khi điều chỉnh một sắc thuế đánh vào việc sản xuất và tiêu thụ một loại hàng hoá A (giả sử: tăng thuế suất), Nhà nước quan tâm tới phản ứng của thị trường đối với việc điều chỉnh này – thể hiện bởi sự thay đổi giá cả cũng như lượng hàng hoá tiêu thụ- và muốn dự kiến trước được phản ứng này, đặc biệt là về mặt định lượng. Từ đó có căn cứ tính toán mức điều chỉnh thích hợp tránh tình trạng bất ổn của thị trường. Đặt vấn đề: để đáp ứng yêu cầu trên, chúng ta cần phân tích tác động trực tiếp (ngắn hạn) của việc tăng thuế suất đối với sản xuất và tiêu thụ loại hàng A trên thị trường. Mô hình hoá: Đối tượng liên quan đến vấn đề cần phân tích là thị trường hàng hoá A cùng sự hoạt động của nó trong trường hợp có xuất hiện yếu tố thuế, Chúng ta mô hình hoá đối tượng này. Theo lý thuyết kinh tế vi mô, ta biết rằng có mối liên hệ khăng khít giữa việc sản xuất (mức cung), tiêu thụ (mức cầu) và giá cả hàng hoá trên thị trường và nó bị chi phối bởi quy luật cung – cầu, hơn nữa, thuế ảnh hưởng tới giá cả và do đó tác động tới mức cung và mức cầu. Mặt khác, thực tiến diễn biến của thị trường cũng cho thấy là các thị trường trong quá trình hoạt động có xu thế hướng về trạng thái cân bằng. Các yếu tố (biến số) ta cần xem xét là mức cung (S), mức cầu (D), giá cả (p) và thuế (T). Bằng cách lập luận tương tự như trong thí dụ 1.1, ta có mô hình: S S = S(p, T); S’= > 0 p ’ D D = D(p, pj, M, T); D = < 0 p S = D Trong đó: S, D, S’, D’, p là các biến nội sinh, T là biến ngoại sinh. Để định dạng cụ thể cho các hàm trong mô hình ta có thể sử dụng các phương pháp trong kinh tế lượng. PTIT Phân tích: Giải phương trình cân bằng, giả sử được nghiệm là p . Rõ ràng p sẽ phụ thuộc vào T nên ta có thể viết p = p (T). Thay các biểu thức: dp /dT, dQ /dT, chúng phản ánh tác động của thuế T tới giá và lượng cân bằng. Giải thích kết quả: Để phân tích tác động của thuế tới giá cả và lượng hàng hoá lưu thông trên thị trường, về mặt định tính ta chỉ cần xét dấu của các biểu thức dp /dT, dQ /dT. Nếu muốn có đánh giá về lượng ta cần có thông tin, dữ liệu cụ thể về các biến để có thể định dạng chi tiết và ước lượng (dạng số) mô hình. 1.2.6 Phương pháp phân tích mô hình – Phân tích so sánh tĩnh. Sau khi đã xây dựng và hiệu chỉnh mô hình phù hợp với hiện tượng và quá trình kinh tế, ta có thể sử dụng mô hình vào các mục đích khác nhau. Trước tiên ta cần thực hiện công việc gọi là giải mô hình. Một cách tổng quát, giải mô hình là việc sử dụng các phương pháp toán học đã biết để giải 10
- Bài giảng toán kinh tế Chương 1: Mô hình toán kinh tế các hệ thức của mô hình – có thể là giải phương trình (đại số hoặc vi, sai phân), giải bài toán quy hoạch, nhằm xác định quan hệ trực tiếp giữa biến nội sinh và biến ngoại sinh cùng tham số, tức là ta phải biểu diễn dưới dạng các hệ thức khác giữa từng biến nội sinh theo biến ngoại sinh, tham số và có thể theo biến nội sinh khác. Cách biểu diễn này gọi là nghiệm của mô hình. Nghiệm có thể là chính xác hoặc xấp xỉ, dưới dạng lời giải bằng số nếu tất cả các biến ngoại sinh và tham số có giá trị bằng số, nhưng cũng có thể dưới dạng biểu thức, các hàm số (hiện hoặc ẩn) nếu biến ngoại sinh, tham số có giá trị quy ước trừu tượng. Rõ ràng là nghiệm của mô hình sẽ phụ thuộc vào các biến ngoại sinh và tham số. Điều chúng ta quan tâm phân tích là khi biến ngoại sinh thay đổi giá trị sẽ tác động như thế nào tới nghiệm. Phân tích này gọi là phân tích so sánh tĩnh. Trước hết, cần nhắc lại một số khái niệm cơ bản trong toán học và kinh tế học ● Ý nghĩa của đạo hàm trong kinh tế: - Đạo hàm và giá trị cận biên trong kinh tế. Xét mô hình hàm số: y = f(x), trong đó y và x là các biến số kinh tế. Người ta quan tâm đến xu hướng biến thiên của biến phụ thuộc y tại điểm x0 khi biến độc lập x thay đổi một lượng rất nhỏ. Chẳng hạn, khi xét mô hình hàm sản xuất Q = f(L), người ta thường quan tâm đến số lượng sản phẩm hiện vật tăng thêm khi sử dụng thêm một đơn vị lao động. Theo định nghĩa đạo hàm ' Δy f(x0 + x) - f(x0 ) f (x0 ) = lim = lim x 0 Δx x 0 x Khi ∆x có giá trị tuyệt đối đủ nhỏ, ta có: Δy f(x + x) - f(x ) = 0 0 f ' (x ) Δx x 0 ' y = f(x0 + x) - f(x0 ) f (x0 ). x ’ ’ Khi ∆x = 1 ta có ∆y ≈ f (x0). Như vậy, đạo hàm f (x0) biểu diễn xấp xỉ lượng thay đổi giá trị của ’ biến số y khi biến số x tăng thêm một đơn vị. Các nhà kinh tế gọi f (x0) là giá trị y – cận biên của x tại điểm x0. Đối với mỗi hàm kinh tế, giá trị cận biên có tên gọi cụ thể của nó. - Đạo hàm cấp hai và quy luật lợi ích cận biên giảm dần Xét mô hình y = f(x), trong đó y là biến số biễu diễn lợi ích kinh tế (chẳng hạn như thu nhập, lợi nhuận, số lượng sản phẩm, ) và x là biến số mô tả yêu tố đem lại lợi ích y. Quy luật lợi ích cận biên giảm dần nói rằng khi x cPTITàng lớn thì giá trị y – cận biên càng nhỏ, tức là My = f’(x) là hàm số đơn điệu giảm. Dưới góc độ toán học, điều kiện cần để My giảm dần theo x là: (My)’ = f’’(x) ≤ 0 ● Hệ số co dãn của cung và cầu theo giá Một vấn đề được quan tâm trong kinh tế là phản ứng của cung và cầu đối với sự biến động giá trên thị trường. Với giả thiết các yếu tố khác không thay đổi, sử phụ thuộc của lượng cầu Qd vào giá p được biểu diễn bằng hàm cầu: Qd = D(p) Trong mô hình hàm cầu biến số p được đo bằng đơn vị tiền tệ, còn biến số Q được đo bằng đơn vị hiện vật. Nếu gọi ∆Qd là mức thay đổi lượng cầu khi giá thay đổi một đơn vị thì ý nghĩa của con số đó còn phụ thuộc vào đơn vị đo. Hơn nữa, đối với các hàng hóa khác nhau thì sự thay đổi giá thêm một đơn vị mang ý nghĩa khác nhau. Để đánh giá độ nhạy của cầu hàng hóa đối với sự biến động giá cả, các nhà kinh tế sử dụng khái niệm hệ số co dãn. 11
- Bài giảng toán kinh tế Chương 1: Mô hình toán kinh tế Hệ số co dãn của cầu theo giá (tính ở mỗi mức giá) là số đo mức thay đổi phần trăm của lượng cầu khi giá tăng 1%. Tại mức giá p, nếu giá thay đổi một lượng ∆p thì lượng cầu thay đổi tương ứng một lượng ∆Qd. Mức phần trăm thay đổi của lượng cầu tính bình quân cho 1% thay đổi giá là: Qd ΔQd /Qd ΔQd p ΔD(p) p εp = = = Δp/p Δp Qd Δp D(p) Chuyển qua giới hạn, khi ∆p→0 ta được công thức tính hệ số co dãn của cầu theo giá tại điểm p là: Qd dQd p dD(p) p ' p εp = = = D (p) dp Qd dp D(p) D(p) Tương tự, hệ số co dãn của cung theo giá là số đo mức thay đổi phần trăm của lượng cung khi giá tăng 1%. Nếu biết hàm cung Qs = S(p) thì hệ số co dãn của cung theo giá tại điểm p được tính theo công thức: Qs dQs p dS(p) p ' p εp = = = S (p) dp Qs dp S(p) S(p) ● Quan hệ giữa hàm bình quân và hàm cận biên Trong kinh tế người ta dùng hàm chi phí biểu diễn tổng chi phí ở mỗi mức sản lượng Q: TC = TC(Q) Khi phân tích sản xuất, cùng với hàm chi phí, người ta sử dụng hàm chi phí bình quân và hàm chi phí cận biên. Ở mỗi mức sản lượng Q, chi phí bình quân là lượng chi phí tính bình quân trên một đơn vị sản phẩm. TC(Q) AC = Q Chi phí cận biên tại mỗi mức sản lượng Q là số đo xấp xỉ lượng chi phí gia tăng khi sản xuất thêm một đơn vị sản lượng. Hàm chi phí cận biên MC là đạo hàm bậc nhất của tổng chi phí (TC’) MC = TC’(Q) Ta có: ' TC ' (TC) - TC (TC)'Q - TC Q MC - AC AC' (Q) = = = PTIT2 Q Q Q Q Do Q > 0 nên dấu của AC’(Q) phụ thuộc dấu của MC – AC. Từ đây suy ra: - Nếu MC > AC thì AC’(Q) > 0, tức là khi chi phí cận biên lớn hơn chi phí bình quân thì chi phí bình quân tăng. - Nếu MC AR thì AR’(Q) > 0, tức lân khi doanh thu cận biên lớn hơn doanh thu bình quân thì doanh thu bình quân tăng. 12
- Bài giảng toán kinh tế Chương 1: Mô hình toán kinh tế - Nếu MR < AR thì AR’(Q) < 0, tức là khi doanh thu cận biên nhỏ hơn doanh thu bình quân thì doanh thu bình quân giảm. - MR = AR khi và chỉ khi AR’(Q) = 0, tức là doanh thu bình quân chỉ có thể đạt cực đại tại điểm mà doanh thu cận biên bằng doanh thu bình quân. Áp dụng các kiến thức trên ta sẽ xét chi tiết hơn phương pháp phân tích so sánh tĩnh a) Đo lường sự thay đổi của biến nội sinh theo biến ngoại sinh. Phân tích so sánh tĩnh đòi hỏi phải đo lường sự phản ứng, biến động (tức thời) cả về xu hướng, độ lớn của biến nội sinh khi một biến ngoại sinh trong mô hình có sự thay đổi nhỏ, còn các biến khác không đổi hoặc khi các biến ngoại sinh cùng thay đổi. Có thể dùng đạo hàm và vi phân để đo lường sự thay đổi này. Giả sử nghiệm của mô hình có biến nội sinh Y phụ thuộc vào các biến ngoại sinh X1, X2, ,Xn như sau Y = F(X1, X2, ,Xn), trong đó F có thể có các tham số α, β, Ký hiệu X = (X1, X2, ,Xn), khi đó có thể viết Y = F(X, α, β, ). ● Đo lường sự thay đổi tuyệt đối: 0 - Xét hàm Y = F(X1, X2, ,Xn), tại điểm X = X , gọi sự thay đổi của Y là ΔYi khi chỉ có Xi thay đổi một lượng nhỏ ΔXi, tức là: ΔYi = F(X1, X2, Xi + ΔXi, .,Xn) - F(X1, X2, Xi, .,Xn) 0 ΔYi gọi là số gia riêng của Y theo Xi tại X . 0 Ta có lượng thay đổi trung bình của Y theo Xi tại X : Y ρ = i Xi 0 Trong trường hợp F khả vi theo Xi ta có tốc độ thay đổi tức thời tại X = X đang xét là: F(X0 ) ρ(Xi ) = Xi Nếu ΔXi khá nhỏ thì ρ(Xi) = ρ, vì vậy nếu ΔXi = 1 thì có thể coi: ρ(Xi) = ΔYi ρ(Xi) gọi là giá trị cận biên của x tại x0 Thí dụ 1.2: Giả sử hàm sản xuất của doanh nghiệp là: Với L =100 đơn vị lao động (chẳng hạn 100 giờ lao động /tuần), mức sản lượng tương ứng là Q = 50 sản phẩm. Sản phẩm cận biên của lao động tại L =100 là: PTIT 5 MP = Q' = = 0,25 L 2 L Điều này có nghĩa là khi tăng mức sử dụng lao động hàng tuần lên một đơn vị (từ 100 lên 101) thì sản lượng hàng tuần sẽ tăng thêm khoảng 0,25 đơn vị hiện vật. Thí dụ 1.3: Chi phí C(Q) phụ thuộc sản lượng Q và được mô hình hoá như sau: C(Q) = Q3 – 61,5Q2 + 1528,5Q + 2000 Sự thay đổi của C khi Q tăng (giảm) một đơn vị (chi phí cận biên), ký hiệu là MC, được xác định bằng công thức: C’(Q) = MC(Q) = 3Q2 - 122,5Q + 1528,5 - Trong trường hợp tất cả các biến ngoại sinh đều thay đổi với các lượng khá nhỏ, ký hiệu là ΔX1, ΔX2, ., ΔXn, thì để tính sự thay đổi của biến nội sinh Y – ký hiệu là ΔY – ta dùng công thức xấp xỉ: 13