Giáo trình Nhập môn kinh tế lượng và ứng dụng - Chương 6: Lựa chọn dạng hàm số và kiểm định đặc trưng mô hình
Các hàm mũ và logarit là hai trong số các hàm được dùng phổ biến nhất trong lập mô hình. Vì
lý do này, sẽ hữu ích khi ôn lại những tính chất cơ bản của các hàm này trước khi sử dụng
chúng.
Hàm Y = aX (a > 0) là một ví dụ của một hàm mũ. Trong hàm này, a là cơ số của hàm và
X là số mũ. Trong toán học, cơ số thông thường nhất dùng trong một hàm mũ là hằng số toán
học e được xác định bởi
Vậy hàm mũ chuẩn có dạng Y = eX, và cũng được viết dưới dạng exp(X). Hàm nghịch của
hàm mũ gọi là hàm logarit. Logarit cơ số a cho trước (phải là số dương) của một số được định
nghĩa là khi lũy thừa logarit của cơ số sẽ cho chính số đó. Ta viết X = logaY. Ví dụ, vì 32 = 25,
logarit cơ số 2 của 32 là 5. Logarit cơ số e được gọi logarit tự nhiên và ký hiệu là Y = lnX,
mà không cần ghi rõ cơ số. Lưu ý rằng ln 1 = 0 bởi vì e0 = 1. Một số tính chất của hàm mũ và
logarit được liệt kê dưới đây.
Tính chất 6.1
a. Hàm logarit và hàm mũ là đơn điệu tăng; nghĩa là, nếu a > b, thì f(a) > f(b), và ngược lại.
b. Logarit của tích hai số bằng tổng logarit; nghĩa là, ln(XY) = lnX + lnY. Cũng vậy, logarit
của tỷ số là hiệu của các logarit. Vậy, ln(X/Y) = lnX – lnY. Theo đó ln(1/X) = – lnX.
c. ln(aX) = Xln a. Theo đó aX = eXln a.
d. aXaY = aX+Y và (aX)Y = aXY.
Không như đường thẳng, có độ dốc không đổi, hàm số tổng quát f(X), như hàm mũ và logarit,
có độ dốc thay đổi. Sự thay đổi của Y theo thay đổi đơn vị của X là tác động cận biên của X
lên Y và thường ký hiệu bởi ?Y/?X (xem Hình 2.A và phần thảo luận liên quan). Nếu sự thay
đổi của X vô cùng nhỏ, ta có độ dốc của tiếp tuyến của đường cong f(X) tại điểm X. Độ dốc
giới hạn này được xem là đạo hàm của Y đối với X và được ký hiệu bởi dY/dX. Vậy đạo hàm
là tác động cận biên của X lên Y với sự thay đổi rất nhỏ của X. Đó là một khái niệm vô cùng
quan trọng trong kinh tế lượng, bởi vì ta luôn hỏi sự thay đổi kỳ vọng của biến phụ thuộc là gì
khi ta thay đổi giá trị của một biến độc lập với một lượng rất nhỏ. Các tính chất của các đạo
hàm được tóm tắt trong Tính chất 2.A.5 và đáng để nghiên cứu. Tính chất 6.2 liệt kê một ít
tính chất của hàm mũ và logarit mà rất hữu ích trong kinh tế lượng. Hình 6.1 minh họa bằng đồ
thị hai hàm số này.
lý do này, sẽ hữu ích khi ôn lại những tính chất cơ bản của các hàm này trước khi sử dụng
chúng.
Hàm Y = aX (a > 0) là một ví dụ của một hàm mũ. Trong hàm này, a là cơ số của hàm và
X là số mũ. Trong toán học, cơ số thông thường nhất dùng trong một hàm mũ là hằng số toán
học e được xác định bởi
Vậy hàm mũ chuẩn có dạng Y = eX, và cũng được viết dưới dạng exp(X). Hàm nghịch của
hàm mũ gọi là hàm logarit. Logarit cơ số a cho trước (phải là số dương) của một số được định
nghĩa là khi lũy thừa logarit của cơ số sẽ cho chính số đó. Ta viết X = logaY. Ví dụ, vì 32 = 25,
logarit cơ số 2 của 32 là 5. Logarit cơ số e được gọi logarit tự nhiên và ký hiệu là Y = lnX,
mà không cần ghi rõ cơ số. Lưu ý rằng ln 1 = 0 bởi vì e0 = 1. Một số tính chất của hàm mũ và
logarit được liệt kê dưới đây.
Tính chất 6.1
a. Hàm logarit và hàm mũ là đơn điệu tăng; nghĩa là, nếu a > b, thì f(a) > f(b), và ngược lại.
b. Logarit của tích hai số bằng tổng logarit; nghĩa là, ln(XY) = lnX + lnY. Cũng vậy, logarit
của tỷ số là hiệu của các logarit. Vậy, ln(X/Y) = lnX – lnY. Theo đó ln(1/X) = – lnX.
c. ln(aX) = Xln a. Theo đó aX = eXln a.
d. aXaY = aX+Y và (aX)Y = aXY.
Không như đường thẳng, có độ dốc không đổi, hàm số tổng quát f(X), như hàm mũ và logarit,
có độ dốc thay đổi. Sự thay đổi của Y theo thay đổi đơn vị của X là tác động cận biên của X
lên Y và thường ký hiệu bởi ?Y/?X (xem Hình 2.A và phần thảo luận liên quan). Nếu sự thay
đổi của X vô cùng nhỏ, ta có độ dốc của tiếp tuyến của đường cong f(X) tại điểm X. Độ dốc
giới hạn này được xem là đạo hàm của Y đối với X và được ký hiệu bởi dY/dX. Vậy đạo hàm
là tác động cận biên của X lên Y với sự thay đổi rất nhỏ của X. Đó là một khái niệm vô cùng
quan trọng trong kinh tế lượng, bởi vì ta luôn hỏi sự thay đổi kỳ vọng của biến phụ thuộc là gì
khi ta thay đổi giá trị của một biến độc lập với một lượng rất nhỏ. Các tính chất của các đạo
hàm được tóm tắt trong Tính chất 2.A.5 và đáng để nghiên cứu. Tính chất 6.2 liệt kê một ít
tính chất của hàm mũ và logarit mà rất hữu ích trong kinh tế lượng. Hình 6.1 minh họa bằng đồ
thị hai hàm số này.
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình Nhập môn kinh tế lượng và ứng dụng - Chương 6: Lựa chọn dạng hàm số và kiểm định đặc trưng mô hình", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- giao_trinh_nhap_mon_kinh_te_luong_va_ung_dung_chuong_6_lua_c.pdf
Nội dung text: Giáo trình Nhập môn kinh tế lượng và ứng dụng - Chương 6: Lựa chọn dạng hàm số và kiểm định đặc trưng mô hình
- Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 6: Lựa chọn dạng hàm số và kiểm định đặc trưng mô hình } Hình 6.5 Hàm Sản Xuất Ước Lượng Diễn giải về mặt kinh tế của giả thuyết β3 = 0 là gì? Kiểm định giả thuyết này đối lại với giả thuyết H1: β3 < 0. Bạn có kết luận gì về tác động cận biên của SQFT lên PRICE? So sánh mô hình này, theo các tiêu chuẩn lựa chọn, với mô hình logarit-tuyến tính được ước lượng trong Ví dụ 6.1 (xem Phần Máy Tính Thực Hành 6.4). } BÀI TOÁN THỰC HÀNH 6.6 Hãy ước lượng mô hình PRICE = β1 + β2 ln SQFT + β3 BATHS + u, và so sánh các kết quả với các kết quả trong Bảng 4.2 và trong Bài Toán Thực Hành 6.5. } BÀI TOÁN THỰC HÀNH 6.7 2 Với quan hệ Y = β1 + β2X + β3X , hãy xác minh độ dốc và độ co giãn cho trong Bảng 6.1. } 6.5 Các Số Hạng Tương Tác Tác động cận biên của một biến giải thích đôi khi có thể phụ thuộc vào một biến khác. Để minh họa, Klein và Morgan (1951) đã đề xuất một giả thuyết về sự tương tác của thu nhập và tài sản trong việc xác định các dạng tiêu dùng. Họ biện luận cho rằng xu hướng tiêu dùng biên tế cũng sẽ phụ thuộc vào tài sản – một người giàu hơn có thể có xu hướng biên tế khác để tiêu dùng ngoài khoản thu nhập. Để thấy điều này, gọi C = α + βY + u. Giả thuyết là β, xu hướng tiêu dùng biên tế, phụ thuộc vào tài sản (A). Một cách đơn giản cho phép thực hiện là giả sử rằng β = β1 + β2A. Thay thế biểu thức này vào hàm tiêu dùng, ta thu được C = α + (β1 + β2A)Y + u. Điều này biến đổi thành mô hình C = α + β1Y + β2(AY) + u. Số hạng AY được xem là số Ramu Ramanathan 11 Thục Đoan/Hào Thi
- Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 6: Lựa chọn dạng hàm số và kiểm định đặc trưng mô hình hạng tương tác bởi vì nó bao gộp sự tương tác giữa các tác động của thu nhập và tài sản. Nhằm mục đích ước lượng, ta tạo ra một biến mới Z, bằng với tích của Y và A, và kế đến hồi qui C theo một hằng số, Y, và Z. Nếu β2 có ý nghĩa về mặt thống kê, thì có dấu hiệu về sự tương tác giữa thu nhập và tài sản. Lưu ý rằng trong ví dụ này, ∆C/∆Y = β1 + β2A. Để xác định tác động cận biên của Y lên C, ta cần có giá trị của A. Ví dụ thứ hai, xét quan hệ Et = α + βTt + ut, trong đó Et là số kilowatt giờ tiêu thụ điện và Tt là nhiệt độ tại thời điểm t. Nếu mô hình này được ước lượng cho mùa hè, ta kỳ vọng β sẽ dương bởi vì, khi nhiệt độ tăng vào mùa hè, thì nhu cầu dùng máy lạnh sẽ cao hơn và do đó tiêu thụ điện sẽ tăng. Tuy nhiên, ta có thể giả thuyết rằng tác động cận biên của T lên E có thể phụ thuộc vào giá điện (Pt). Nếu giá điện là đắt, người tiêu dùng có thể hoãn bật máy lạnh hoặc tắt sớm hơn. Một cách để kiểm định tác động này là giả sử rằng β = β1 + β2Pt. Vậy ta đang giả sử rằng tác động cận biên của nhiệt độ lên tiêu thụ điện phụ thuộc vào giá. Thay biểu thức này vào quan hệ, ta có Et = α + (β1 + β2Pt)Tt + ut = α + β1Tt + β2(PtTt) + ut Để ước lượng các thông số, ta cho Zt = PtTt và hồi qui E theo một hằng số, T, và Z. Sự ý nghĩa của β2 là dấu hiệu của một tác động tương hỗ giữa nhiệt độ và giá. Lưu ý rằng ∆E/∆P = β2T; nghĩa là, tác động cận biên của P lên E phụ thuộc vào nhiệt độ. Nếu ta cho α cũng phụ thuộc vào P, mô hình trở thành Et = α1 + α2Pt + β1Tt + β2(PtTt) + ut Trong các chương sau, ta có vài ví dụ về các tác động tương hỗ như vậy. Phi Tuyến Giả Tạo Để nhận biết sự phi tuyến có thể có, ta có thể thử vẽ đồ thị Y theo một biến độc lập cụ thể (X) và quan sát xem có sự phi tuyến nào xảy ra hay không. Đây là thủ tục nguy hiểm bởi vì nó có thể dẫn đến đặc trưng sai mô hình nghiêm trọng. Ví dụ, giả sử rằng Y là tuyến tính với X, Z, và số hạng tương tác XZ, vậy ta có Y = β1 + β2X + β3Z + β4(XZ) + u và ∆Y/∆X = β2 + β4Z Trong tính toán tác động cận biên của X lên Y, ta xem Z là cố định. Lưu ý rằng tác động cận biên của X lên Y, nghĩa là độ dốc, phụ thuộc vào Z. Biểu đồ phân tán quan sát thực nghiệm, giữa Y và X có thể nhìn giống như Hình 6.6, có vẻ như là quan hệ logarit-tuyến tính giữa Y và X. Trong thực tế, điều này là do hai quan hệ tuyến tính giữa Y và X với các giá trị khác nhau của Z (Z1 và Z2). Vậy, thay vì vẽ đồ thị thực nghiệm quan sát biến Y theo mỗi biến X, bạn nên Ramu Ramanathan 12 Thục Đoan/Hào Thi
- Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 6: Lựa chọn dạng hàm số và kiểm định đặc trưng mô hình cố gắng mô hình hoá quá trình phát dữ liệu (DGP) dùng lý thuyết và trực giác về hành vi cơ bản và kế đến tiến hành kiểm định đặc trưng. Trong Phần 6.13, 6.14, và 6.15, ta thảo luận vài phương pháp để kiểm định các đặc trưng hồi qui. } Hình 6.6 Một Ví Dụ của Phi Tuyến Giả Tạo } 6.6 Hiện Tượng Trễ Trong Hành Vi (Các Mô Hình Động) Các tác động kinh tế và các biến khác hiếm khi xảy ra tức thời; phải tốn thời gian để người tiêu dùng, nhà sản xuất, và các tác nhân kinh tế khác phản ứng. Lý thuyết kinh tế vĩ mô cho ta biết rằng tổng sản lượng quốc dân (GNP) cân bằng (Y) được xác định bởi một số biến ngoại sinh, đặc biệt, bởi chi tiêu chính phủ (G), thuế (T), cung tiền (M), xuất khẩu (X) v.v . Bởi vì hiệu ứng cân bằng chỉ giảm được sau một khoảng thời gian, các mô hình kinh tế lượng dùng dữ liệu dạng chuỗi thời gian thường được thành lập với hiện tượng trễ trong hành vi. Một ví dụ của mô hình như vậy cho như sau: Yt = β1 + β2Gt + β3Gt-1 + β4Mt + β5Mt-1 + β6Tt + β7Tt-1 + β8Xt + β8Xt-1 + ut Thủ tục ước lượng ở đây hoàn toàn đơn giản. Đơn giản ta tạo các biến có hiệu ứng trễ Gt- 1, Mt-1, Tt-1 và Xt-1 và hồi qui Yt theo các biến này dùng quan sát từ 2 đến n. Bởi vì Gt-1 và các biến khác không được định nghĩa cho t = 1, ta mất quan sát thứ nhất trong ước lượng. Tuy nhiên, một số vấn đề phát sinh trong mô hình này bởi vì các biến độc lập tương quan với nhau và cũng do bởi vì bậc tự do bị mất khi có nhiều hiệu ứng trễ hơn thêm vào. Những vấn đề này được thảo luận chi tiết trong Chương 10. Hiện tượng trễ trong hành vi có thể có dạng hiện tượng trễ trong biến phụ thuộc. Mô hình có thể có dạng Ramu Ramanathan 13 Thục Đoan/Hào Thi
- Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 6: Lựa chọn dạng hàm số và kiểm định đặc trưng mô hình Yt = β1 + β2Yt-1 + β3Xt + β4Xt-1 + ut Ví dụ, gọi Yt là chi tiêu tại thời điểm t và Xt là thu nhập. Bởi vì người tiêu dùng có xu hướng duy trì mức tiêu chuẩn sống thường lệ, ta có thể kỳ vọng sự tiêu dùng của họ liên quan mật thiết với sự tiêu dùng trước đây của họ. Vì vậy, chúng ta có thể kỳ vọng là Yt cũng phụ thuộc vào Yt-1. Cụ thể hơn, xem phương trình sau: Yt = β1 + β2Yt-1 + β3(Xt – Xt-1) + ut Vì “các tập quán thói quen” nên nói chung người tiêu dùng miễn cưỡng thay đổi lối sống của họ, và do đó chúng ta kỳ vọng mức tiêu thụ tại thời điểm t (Yt) phụ thuộc vào mức tiêu thụ ở giai đoạn trước đó (Yt-1). Tuy nhiên, nếu mức thu nhập (Xt) thay đổi, người tiêu dùng sẽ điều chỉnh hành vi tiêu dùng của họ tương ứng với sự tăng hoặc giảm thu nhập. Do vậy chúng ta sẽ dùng mô hình động được xây dựng ở trên và kỳ vọng rằng tất cả các hệ số sẽ có giá trị dương. } VÍ DỤ 6.4 Tập dữ liệu DATA6-3 (xem Phụ lục D) là dữ liệu về chi tiêu tiêu dùng cá nhân đầu người của Vương Quốc Anh (C, đo bằng bảng Anh) và thu nhập tùy dụng đầu người (nghĩa là, thu nhập cá nhân trừ thuế, ký hiệu là DI, và cũng được tính theo đơn vị bảng Anh). Để điều chỉnh tác động của lạm phát, cả hai biến này được biểu diễn theo giá trị thực (còn được gọi là giá không đổi). Mô hình động ước lượng được trình bày dưới đây (xem Phần Thực Hành Máy Tính 6.5), với trị thống kê t trong ngoặc đơn. ˆ Ct = -46,802 + 1,022Ct-1 + 0,706 (DIt – DIt-1) (-2.07) (123.0) (9.93) R2 = 0,998 df = 38 Mặc dù mô hình đạt được sự thích hợp rất tốt và các ước lượng có vẻ hợp lý, mô hình này có một số trở ngại. Như sẽ thấy ở Chương 10 và 13 rằng mô hình này vi phạm tính độc lập chuỗi của Giả thiết 3.6 và Giả thiết 3.4 là các biến độc lập không được tương quan với các số hạng sai số. Đặc trưng sai này sẽ làm cho các trị ước lượng bị thiên lệch. Chúng ta sẽ xem xét lại mô hình này trong các chương 10 và 13. } 6.7 Ứng dụng: Quan Hệ Giữa Số Bằng Sáng Chế Và Chi Tiêu R&D (đã duyệt lại) Ramu Ramanathan 14 Thục Đoan/Hào Thi
- Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 6: Lựa chọn dạng hàm số và kiểm định đặc trưng mô hình Trong Phần 3.11, chúng ta đã ước lượng mô hình hồi quy tuyến tính đơn giữa số bằng sáng chế và chi tiêu cho R&D và biết rằng mô hình này là hoàn toàn không đủ vì biểu đồ phân tán của các giá trị quan sát cho thấy một quan hệ đường cong (Xem Hình 3.11). Chúng ta cũng chỉ ra rằng có hiện tượng trễ giữa chi tiêu thực cho hoạt động nghiên cứu và phát triển và hiệu quả của các chi tiêu này về mặt số bằng sáng chế. Ở đây chúng ta sẽ ước lượng mô hình phi tuyến động và so sánh các kết quả. Tuy nhiên, vì chưa có lý thuyết về kinh tế hay các lý thuyết khác về số năm của hiện tượng trễ này hoặc về dạng hàm số cần sử dụng, nên một cách tùy ý chúng ta cho độ trễ này lên đến 4 năm. Bốn biến trễ được tạo ra gồm R&D(t-1), R&D(t-2), R&D(t-3), và R&D(t-4). Các biến này sau đó sẽ được bình phương lên và một mô hình bậc hai với tất cả các biến được ước lượng. } Hình 6.7 So Sánh Mô Hình Động và Mô Hình Tĩnh (đường liền là mô hình tĩnh, x là giá trị quan sát thực, và o là mô hình động) Số bằng sáng chế Chi phí R&D Vì vậy, đây là một bài tập “khớp đường cong” thuần túy thay vì là một bài tập dựa trên lý thuyết kinh tế. Báo cáo có chú giải in ra từ máy tính ở bảng 6.2 cần được tìm hiểu kỹ lưỡng (xem Phần Thực Hành Máy Tính 6.6 để chạy lại bảng 6.2). Hình 6.7 vẽ số bằng sáng chế thật, các giá trị gán từ mô hình tĩnh ở Chương 3 (đường thẳng liền), và các giá trị từ mô hình động cuối cùng. Chúng ta nhận thấy rằng mô hình động thể hiện rất tốt diễn biến thực tế, ngay cả trong những năm các chi phí R&D tụm lại và trong những năm từ 1988-1993 khi mô hình tuyến tính hoàn toàn không thể hiện được. Do đó mô hình phi tuyến động là một đặc trưng tốt hơn so với mô hình tĩnh tuyến tính đơn giản. } Bảng 6.2 Kết Quả Máy Tính Có Kèm Chú Giải Cho Phần Ưùng Dụng ở Phần 6.7 Ramu Ramanathan 15 Thục Đoan/Hào Thi
- Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 6: Lựa chọn dạng hàm số và kiểm định đặc trưng mô hình MODEL 1: OLS estimates using the 34 observations 1960-1993 Dependent variable: PATENTS VARIABLE COEFFICIENTSTDERROR T STAT 2Prob(t>|T|) 0) const 34.5711 6.3579 5.438 0.000006 3) R&D 0.7919 0.0567 13.966 0.000000 Mean of dep. var. 119.238 S.D. of dep. variable 29.306 Error Sum of Sq (ESS) 3994.3003 Std Err of Resid. (sgmahat) 11.1724 Unadjusted R-squared 0.859 Adjusted R-squared 0.855 F-statistic (1, 32) 195.055 p-value for F() 0.000000 Durbin-Watson stat. 0.234 First-order autocorr. coeff 0.945 MODEL SELECTION STATISTICS SGMASQ 124.822 AIC 132.146 FPE 132.164 HQ 136.255 SCHWARZ 144.56 SHIBATA 131.301 GCV 132.623 RICE 133.143 } Bảng 6.2 (tiếp theo) [phát các biến trễ] R&D1 = R&D(-1) sq_R&D = (R&D)2 R&D2 = R&D(-2) sq_R&Di = (R&Di)2 R&D3 = R&D(-3) for I = 1,2,3, and 4 R&D4 = R&D(-4) [Ước lượng mô hình tổng quát với tất cả các biến giải thích bằng cách sử dụng chỉ các quan sát từ 1964- 1993, vì các biến trễ không được định nghĩa trong giai đoạn từ 1960-1963] MODEL 2: OLS estimates using 30 observations 1964-1993 Depedent variable: PATENTS VARIABLE COEFFICIENT STDERROR T STAT 2Prob(t>|T|) 0) const 85.3526 22.1027 3.862 0.001051 3) R&D -0.0477 1.1251 -0.042 0.966638 4) R&D1 0.6033 2.0562 0.293 0.772387 5) R&D2 0.0001794 2.1850 0.000 0.999935 6) R&D3 -0.5869 2.0522 -0.286 0.777989 7) R&D4 -0.1837 1.0994 -0.167 0.869055 8) sq_R&D -0.0007326 0.0049 -0.150 0.882674 9) sq_R&D1 -0.0018 0.0089 -0.197 0.845884 10) sq_R&D2 0.0017 0.0098 0.177 0.861555 11) sq_R&D3 -0.0007564 0.0092 -0.082 0.935597 12) sq_R&D4 0.0071 0.0051 1.405 0.176209 Mean of dep. var. 123.330 S.D. of dep. variable 28.795 Error Sum of Sq (ESS) 223.3789 Std Err of Resid. (sgmahat) 3.4288 Ramu Ramanathan 16 Thục Đoan/Hào Thi
- Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 6: Lựa chọn dạng hàm số và kiểm định đặc trưng mô hình Unadjusted R-squared 0.991 Adjusted R-squared 0.986 F-statistic (1, 32) 202.626 p-value for F() 0.000000 Durbin-Watson stat. 1.797 First-order autocorr. coeff 0.101 MODEL SELECTION STATISTICS SGMASQ 11.7568 AIC 15.5026 FPE 16.0676 HQ 18.2719 SCHWARZ 25.9139 SHIBATA 12.9063 GCV 18.5633 RICE 27.9224 Excluding the constant, p-value was highest for variable 5 (R&D2) [Lưu ý rằng có hiện tượng đa cộng tuyến rất cao giữa các biến giải thích. Các giá trị hiện hành và trễ của chi phí R&D cũng như R&D và các bình phương của chúng được kỳ vọng là tương quan chặt với nhau. Như vậy, không có gì ngạc nhiên, trừ số hạng hằng số, tất cả đều không có ý nghĩa. Như đã đề cập ở chương trước, điều này không có nghĩa rằng các biến này là “không quan trọng”, mà chỉ có nghĩa rằng hiện tượng đa cộng tuyến có thể là những biến ẩn cần được đưa vào mô hình. Theo phương pháp đơn giản hóa mô hình dựa trên dữ liệu, chúng ta nên loại các biến thừa. Bước đầu tiên, chúng ta loại bỏ các biến với giá trị p-values trên 0,9. Đó là các biến R&D, R&D2, và sq_R&D3.] MODEL 3: OLS estimates using 30 observations 1964-1993 } Bảng 6.2 (tiếp theo) Depedent variable: PATENTS VARIABLE COEFFICIENTSTDERROR T STAT 2Prob(t>|T|) 0) const 84.8409 19.0579 4.452 0.000200 4) R&D1 0.6043 0.6351 0.952 0.351669 6) R&D3 -0.7352 0.5233 -1.405 0.174012 7) R&D4 -0.0745 0.5134 -0.145 0.886004 8) sq_R&D -0.0009491 0.0012 -0.824 0.418554 9) sq_R&D1 -0.0017 0.0034 -0.496 0.624855 10) sq_R&D2 0.0016 0.0025 0.641 0.527835 12) sq_R&D4 0.0066 0.0020 3.364 0.002799 Mean of dep. var. 123.330 S.D. of dep. variable 28.795 Error Sum of Sq (ESS) 223.6243 Std Err of Resid. (sgmahat) 3.1882 Unadjusted R-squared 0.991 Adjusted R-squared 0.988 F-statistic (1, 32) 334.799 p-value for F() 0.000000 MODEL SELECTION STATISTICS SGMASQ 10.1647 AIC 12.7064 FPE 12.8753 HQ 14.3197 SCHWARZ 18.4628 SHIBATA 11.4297 GCV 13.861 RICE 15.9732 Ramu Ramanathan 17 Thục Đoan/Hào Thi
- Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 6: Lựa chọn dạng hàm số và kiểm định đặc trưng mô hình Excluding the constant, p-value was highest for variable 7 (R&D4). Comparison of Model 2 and Model 3 is given below: Null hypothesis is: the regression parameters are zero for the variables R&D, R&D2, and sq_R&D3. Test statistic: F(3,19) = 0.006957, with p-value = 0.999173 Of the 8 model selection statistics, 8 have improved [Trong kiểm định F Wald cho các biến bị loại ra, p-value đạt giá trị cao cho thấy rằng chúng ta không thể bác bỏ giả thuyết không cho rằng các hệ số của các biến này tất cả đều bằng không ngay cả tại mức ý nghĩa cao đến 0,9. Như vậy, loại bỏ chúng là hợp lý. Hơn nữa, tất cả tám trị thống kê chọn mô hình đều giảm, điều đó có nghĩa có một sự cải thiện về độ thích hợp của mô hình. Mặc dù nhiều giá trị p-value giảm, chỉ có duy nhất một giá trị đủ nhỏ để có ý nghĩa – đó là giá trị của biến số 12. Điều này có nghĩa phải loại bỏ thêm. Tiếp theo, chúng ta loại bỏ biến R&D4, sq_R&D1, và sq_R&D2, các biến này ứng với giá trị p-value lớn hơn 0,5] MODEL 4: OLS estimates using 30 observations 1964-1993 Depedent variable: PATENTS VARIABLE COEFFICIENTSTDERROR T STAT 2Prob(t>|T|) 0) const 82.8545 12.0355 6.884 0.000000 4) R&D1 0.4771 0.3278 1.455 0.158001 6) R&D3 -0.6370 0.2388 -2.667 0.013227 8) Sq_R&D -0.0011 0.0010000 -1.146 0.262479 12) Sq_R&D4 0.0065 0.0006784 9.609 0.000000 } Bảng 6.2 (tiếp theo) Mean of dep. var. 123.330 S.D. of dep. variable 28.795 Error Sum of Sq (ESS) 223.5118 Std Err of Resid. (sgmahat) 3.0562 Unadjusted R-squared 0.990 Adjusted R-squared 0.989 F-statistic (1, 32) 637.338 p-value for F() 0.000000 Durbin-Watson stat. 1.844 First-order autocorr. coeff 0.078 MODEL SELECTION STATISTICS SGMASQ 9.34047 AIC 10.8631 FPE 10.8972 HQ 11.7057 SCHWARZ 13.7206 SHIBATA 10.3783 GCV 11.2086 RICE 11.6756 Excluding the constant, p-value was highest for variable 8 (sq_R&D). Comparison of Model 3 and Model 4: Null hypothesis is: the regression parameters are zero for the variables R&D4, sq_R&D1, and sq_R&D2. Test statistic: F(3,22) = 0.324242, with p-value = 0.807788 Of the 8 model selection statistics, 8 have improved. Ramu Ramanathan 18 Thục Đoan/Hào Thi
- Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 6: Lựa chọn dạng hàm số và kiểm định đặc trưng mô hình [Trong trường hợp này cũng vậy, trong kiểm định F Wald cho các biến bị loại ra, p-value đạt giá trị cao cho thấy rằng chúng ta không thể bác bỏ giả thuyết không cho rằng các hệ số của các biến này tất cả đều bằng không ngay cả tại mức ý nghĩa cao đến 0,8. Vì vậy, việc loại bỏ chúng là hợp lý. Thêm nữa, tất cả tám trị thống kê chọn mô hình đều giảm, điều đó có nghĩa có một sự cải thiện về độ thích hợp của mô hình. Vẫn còn hai biến (sq_R&D và R&D1) có giá trị trên 15%. Chúng ta tiếp tục loại bỏ các biến này, nhưng từng biến một, và đi đến một mô hình cuối cùng trong đó tất cả các hệ số có ý nghĩa ở mức dưới 2%] MODEL 5: OLS estimates using 30 observations 1964-1993 Depedent variable: PATENTS VARIABLE COEFFICIENTSTDERROR T STAT 2Prob(t>|T|) 0) const 91.3464 6.4046 14.263 0.000000 6) R&D3 -0.2951 0.1175 -2.512 0.018286 12) sq_R&D4 0.0059 0.0005486 10.675 0.000000 Mean of dep. var. 123.330 S.D. of dep. variable 28.795 Error Sum of Sq (ESS) 258.6727 Std Err of Resid. (sgmahat) 3.0952 Unadjusted R-squared 0.989 Adjusted R-squared 0.988 F-statistic (1, 32) 1241.43 p-value for F() 0.000000 Durbin-Watson stat. 1.665 First-order autocorr. coeff 0.166 MODEL SELECTION STATISTICS SGMASQ 9.58047 AIC 10.5315 FPE 10.5385 HQ 11.0143 SCHWARZ 12.1155SHIBATA 10.3469 GCV 10.645 RICE 10.778 Of the 8 model selection statistics, 7 have improved. } Bảng 6.2 (tiếp theo) [Tính các trị dự báo và sai số phần trăm tuyệt đối cho từng dự báo] Obs R&D PATENT Predicted Prediction Absolute S value error percent error 1964 76.83 93.2 93.1259 0.0740826 0.0794878 1965 80 100.4 93.8292 6.57081 6.54463 1966 84.82 93.5 94.8126 -1.31258 1.40383 1967 86.84 93 97.9126 -4.91264 5.28241 1968 88.81 98.7 102.306 -3.606 3.65394 1969 88.28 104.4 103.795 0.605085 0.579583 1970 85.29 109.4 107.851 1.5492 1.41609 1971 83.18 111.1 109.3 1.80002 1.62018 1972 85.07 105.3 111.483 -6.1826 5.87141 1973 86.72 109.6 111.815 -2.21525 2.02121 1974 85.45 107.4 109.399 -1.99891 1.86118 Ramu Ramanathan 19 Thục Đoan/Hào Thi