Giáo trình Nhập môn kinh tế lượng và ứng dụng - Chương 13: Các mô hình hệ phương trình

Phương trình (13.1), (13.2), và (13.3) được biết đến như những phương trình cấu
trúc của mô hình hệ phương trình, và các hệ số hồi qui – a và ß – là những thông số
cấu trúc. Bởi vì giá và lượng được xác định một cách đồng thời, nên chúng đều là những
biến nội sinh. Chúng ta lưu ý giá tác động lên lượng và ngược lại. Điều này được biết 
đến như hiện tượng phản hồi, là một đặc tính thông thường giữa những mô hình hệ
phương trình. Thu nhập và lượng mưa không được xác định bởi mô hình đặc trưng nhưng
chúng được coi là ngoại sinh, và do vậy chúng là những biến ngoại sinh. Trong các mô
hình phương trình-đơn, chúng ta sử dụng những thuật ngữ như biến ngoại sinh và biến
giải thích thay thế cho nhau. Đối với những mô hình hệ phương trình, thì không thể sử
dụng như vậy được nữa. Trong Phương Trình (13.1), giá cả là biến giải thích nhưng lại
không phải là một biến ngoại sinh.
Mặc dù mô hình được đặc trưng bằng ba phương trình, cho nên bằng cách đặt qd =
qs = q, chúng ta có thể giảm mô hình xuống còn một đặc trưng hai-phương trình. Mô
hình hệ phương trình do đó chỉ còn hai phương trình với hai biến nội sinh (p và q) và ba
biến ngoại sinh (một số hạng hằng số, thu nhập, và lượng mưa). Số phương trình trong
một hệ thống (mà nó tương tự như số biến nội sinh) được ký hiệu là G, và số biến ngoại
sinh được ký hiệu là K. 
pdf 24 trang hoanghoa 10/11/2022 4660
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình Nhập môn kinh tế lượng và ứng dụng - Chương 13: Các mô hình hệ phương trình", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfgiao_trinh_nhap_mon_kinh_te_luong_va_ung_dung_chuong_13_cac.pdf

Nội dung text: Giáo trình Nhập môn kinh tế lượng và ứng dụng - Chương 13: Các mô hình hệ phương trình

  1. Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 13: Các mô hình hệ phương trình được. Trong phương trình thứ hai Y1 và X2 bị loại, và do vậy thỏa mãn điều kiện thứ tự. Trong phương trình thứ ba Y1, X1, và X2 bị loại ra, và do đó phương trình này cũng thỏa mãn điều kiện thứ tự. Phát biểu của điều kiện sắp hạng đòi hỏi một kiến thức về ma trận số học và việc đó nằm ngoài phạm vi của quyển sách này. Người đọc đã làm quen với đại số tuyến tính được khuyến khích tham khảo những quyển sách ghi trong phần phụ lục ở cuối chương này. | BÀI THỰC HÀNH 13.2 Rút ra những phương trình dạng rút gọn cho hệ thống trong Ví Dụ 13.1 và cho biết bạn có thể trở lại và xây dựng lại các thông số cấu trúc từ những thông số dạng rút gọn hay không. | 13.4 Những Thủ Tục Ước Lượng Bình Phương Tối Thiểu Gián Tiếp Chúng ta đã thấy rằng nếu một mô hình được nhận dạng chính xác, thì sẽ có một cách duy nhất để nhận được những giá trị ước lượng cấu trúc từ những giá trị ước lượng rút gọn. Thủ tục này được gọi là thủ tục bình phương tối thiểu gián tiếp (ILS) và được minh họa bằng mô hình vĩ mô đơn giản đã được trình bày trong Phần 13.2. Dạng rút gọn của Ct có thể được viết lại như sau Ct = λ0 + λ 1It + εt (13.16) với λ0 = α /(1 - β), λ1 = β /(1 - β), và εt= ut /(1 - β). Biến ngoại sinh It không tương quan với ut, và vì thế OLS có thể áp dụng được cho dạng rút gọn. Tính chất này được tổng quát hóa cho một mô hình đa phương trình. Do vậy, những số hạng sai số trong dạng rút gọn của một mô hình hệ phương trình luôn luôn thỏa mãn những giả thiết cho việc áp dụng OLS vào dạng rút gọn. Do đó những giá trị ước lượng OLS của những thông số dạng rút gọn (λ0 và λ1 trong ví dụ) là BLUE. Aùp dụng OLS vào Phương Trình (13.16) và sử dụng ký hiệu trong Phương Trình (13.A.2) và (13.A.3) trong phần phụ lục chương này, chúng ta có thể nhận được những giá trị ước lượng của α và β (ký hiệu bằng ~). ~ β ~ SCI ~ SCI ~ = λ1 = hoặc β = 1− β SII SCI + SII ~ ~ ~ α = (1 - β ) λ0 Ramu Ramanathan 11 Thuc Doan/Hao Thi
  2. Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 13: Các mô hình hệ phương trình Bởi vì những phép biến đổi của các giá trị ước lượng nhất quán cũng sẽ nhất quán, nên ~ α~ và β cũng nhất quán. Tuy nhiên, chúng không phải là không thiên lệch bởi vì những phép biến đổi là phi tuyến. Cho nên, thủ tục bao gồm đầu tiên áp dụng OLS vào các phương trình dạng rút gọn và tiếp theo sử dụng chúng để tìm ra một cách gián tiếp các thông số cấu trúc. Phương pháp ILS không được sử dụng rộng rãi vì (1) hầu hết những mô hình hệ phương trình đều có xu hướng bị nhận dạng quá mức và (2) nếu hệ thống có nhiều phương trình, thì việc tìm ra dạng rút gọn và quay trở lại dạng cấu trúc sẽ rất dài dòng. Do đó một số phương pháp khác được sử dụng. Ở đây chúng ta chỉ giới thiệu hai trong số các phương pháp. Đối với những phương pháp khác, tham khảo bất kỳ quyển sách nào được đề cập trong phần mục lục sách tham khảo. Thủ Tục Biến Công Cụ Chúng ta thấy rằng các giá trị ước lượng OLS của một phương trình cấu trúc không nhất quán là do biến nội sinh ở vế phải (gọi là Y2) tương quan với số hạng sai số. Giả sử chúng ta tìm thấy một biến (gọi là Z) có những tính chất sau: (1) Z không tương quan với số hạng sai số, và (2) Z tương quan rất mạnh với biến nội sinh ở vế bên phải Y2. Z sẽ được coi là một biến thay thế tốt cho biến Y2. Các giá trị ước lượng nhận được do việc sử dụng Z sẽ nhất quán bởi vì nó không tương quan với số hạng sai số. Biến như vậy được gọi là biến công cụ, và phương pháp vừa được mô tả, mà trong đó biến công cụ được sử dụng như một biến thay thế cho biến nội sinh gây ra thiên lệch bình phương tối thiểu, gọi là kỹ thuật biến công cụ (IV). Để minh họa thủ tục này, xem xét mô hình hai –phương trình sau trong đó các số hạng hằng số bị loại bằng cách biểu diễn các biến như những độ lệch từ các trị trung bình (để đơn giản, chúng ta cũng bỏ chỉ số t ở dưới). y1 = α1y2 + α2x1 + u y2 = β1y1 + β2x2 + v Nếu chúng ta đã áp dụng OLS vào phương trình đầu, chúng ta cũng có thể sử dụng mẫu tương tự của điều kiện Cov(y2, u) = 0 và Cov(x1, u) = 0, tức là ^ ^ ∑ y2 u = 0 và ∑ x1 u = 0 Tuy nhiên, hai đồng phương sai đầu tiên không bằng 0 do tính chất đồng thời, và vì vậy chúng ta không thể sử dụng điều kiện đầu tiên. Để có được một phương trình khác, kỹ thuật biến công cụ sẽ sử dụng dữ kiện Cov(x2, u) = 0, bởi vì x2 là biến ngoại sinh. Do đó, x2 được sử dụng như công cụ đối với y2, và điều kiện thứ hai sẽ là ∑x2u = 0. Sử dụng dữ kiện u = y1 – α1y2 – α2x1, người ta đã chứng minh rằng các phương trình chuẩn, sử dụng cách tiếp cận IV, sẽ như sau: Ramu Ramanathan 12 Thuc Doan/Hao Thi
  3. Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 13: Các mô hình hệ phương trình 2 ∑ x1 y1 = α1∑ x1 y2 + α2 ∑ x1 ∑ x2 y1 = α1 ∑ x2 y2 + α2 ∑ x1 x2 Trong ví dụ này, các tham số cấu trúc được nhận biết một cách chính xác, và do vậy số các phương trình chuẩn bằng với số tham số. Tuy nhiên, nếu một trong các phương trình được nhận dạng quá mức, thì số các công cụ có thể có đối với y2 sẽ nhiều hơn 1, và chúng ta sẽ có quá nhiều phương trình chuẩn. Chẳng hạn, giả sử rằng phương trình thứ hai cũng có biến ngoại sinh x3. Thì phương trình thứ ba, ∑x3u = 0, sẽ tạo ra kết quả ba phương trình với hai tham số chưa biết, α1 và α2. Để tránh sự nhận dạng quá mức này, thủ tục chuẩn là sử dụng tổ hợp tuyến tính của các biến x trong tất cả các phương trình như là công cụ đối với y2. Có thể nhận thấy rằng thủ tục này tạo ra các ước lượng nhất quán và hiệu quả một cách tiệm cận (tức là, đối với kích thước mẫu lớn). Nếu tất cả các phương trình đều tuyến tính theo các tham số, thì phương pháp thứ IV tương đương với thủ tục bình phương tối thiểu hai giai đoạn (TSLS), mà về tính toán thì dễ hơn cách tiếp cận biến công cụ. Thủ tục TSLS được mô tả ở phần tiếp theo. Thủ Tục Bình Phương Tối Thiểu Hai Giai Đoạn Thủ tục TSLS có thể được áp dụng để có các ước lượng duy nhất nhất quán và hiệu quả một cách tiệm cận. Kỹ thuật này cũng hữu dụng trong trường hợp nhận dạng chính xác, và nó sẽ cho các ước lượng giống như các ước lượng được cho bởi thủ tục ILS. Do đó, nó có thể được áp dụng liệu một mô hình được nhận dạng chính xác hay nhận dạng quá mức. TSLS dễ áp dụng và được minh họa ở đây cho mô hình 4 của phần 13.3. Một ví dụ thực tế và ứng dụng “bước – qua” được trình bày sau đây. Giai đoạn 1 Trước tiên ước lượng dạng rút gọn đối với tất cả các biến nội sinh xuất hiện ở bên vế phải. Trong Mô hình 4, p là biến nội sinh duy nhất xuất hiện bên vế phải. Vì vậy hồi qui p trên y, r, f, và hằng số. Sau đó lưu lại pˆ , giá trị dự đoán của p thu được từ các ước lượng dạng rút gọn. Do vậy, ˆ ˆ ˆ ˆ pˆ = λ0 + λ1 y + λ2 r + λ3 f . Giai đoạn 2 Ước lượng phương trình cấu trúc nhưng sử dụng như các công cụ các biến nội sinh dự đoán thu được trong giai đoạn đầu tiên. Trong Mô hình 4 điều này có nghĩa rằng chúng ta hồi qui q theo hằng số, pˆ , và y cho phương trình nhu cầu. Hồi qui q theo hằng số, pˆ , r và f cho phương trình cung. Do đó, chúng ta sẽ ước lượng các phương trình cấu trúc nhưng thay thế p bằng pˆ . pˆ là biến công cụ ở đây. Tuy nhiên, trong việc tính toán các sai số chuẩn, giá trị ban đầu p sẽ được sử dụng. Cũng vậy, khi tính toán R2, sẽ tốt hơn để có giá trị này như là bình phương của tương quan giữa các giá trị Ramu Ramanathan 13 Thuc Doan/Hao Thi
  4. Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 13: Các mô hình hệ phương trình quan sát và dự đoán của biến phụ thuộc (tức là, nội sinh). Có thể thấy rằng thủ tục này dẫn tới các ước lượng nhất quán. Một thủ tục khác, được biết như phương pháp bình phương tối thiểu ba giai đoạn, xem xét các đồng phương sai giữa các số hạng sai số của các phương trình khác nhau. Thủ tục này và cá thủ tục khác chẳng hạn như thích hợp cực đại khi thông tin giới hạn và thích hợp cực đại khi đầy đủ thông tin nằm ngoài phạm vi của cuốn sách. Các độc giả quan tâm có nắm rõ về đại số ma trận có thể tham khảo phần mục lục sách tham khảo ở phần cuối của chương này. Kiểm Định Nhân Tử Lagrange cho Các Biến Bị Loại Bỏ Trong Chương 6, chúng ta đã thảo luận thủ tục để sử dụng kiểm định LM cho các biến thêm vào một mô hình đơn phương trình. Kiểm định cũng có thể ứng dụng trong bối cảnh của một hệ phương trình nhưng đòi hỏi một số thay đổi. Wooldridge (1990) đã chỉ ra rằng thủ tục kiểm định được sử dụng cho một mô hình đơn phương trình không mang tính ứng dụng bởi vì phân phối của trị thống kê nR2 được tính toán theo cách thông thường chưa được biết ngay cả đối với mẫu kích thước lớn. Thay vào đó, ông ta đề nghị thủ tục sau: Bước 1 Mô hình tổng quát Yt = β1Xt1 + β2Xt2 + ut, trong đó mục tiêu là kiểm định giả thuyết không β2 = 0. Xt1 và Xt2 được sử dụng một cách tổng quát để trình bày một tập hợp các biến cơ sở và một tập hợp các biến thêm vào, một cách lần lượt (Xt1 cũng bao gồm một số hạng hằng số). Được biểu thị bởi Zt, các biến trong dạng rút gọn được sử dụng như những công cụ. Bước 2 Ước lượng mô hình giới hạn Yt = β1Xt1 + ut bằng TSLS và lưu trữ các phần dư ~ ut tương ứng. ~ Bước 3 Hồi qui Xt1 theo Zt và thu được các giá trị “thích hợp” X t1 . ˆ Bước 4 Làm tương tự với Xt2 và biểu thị các giá trị thích hợp bằng X t 2 . ~ ~ ˆ 2 Bước 5 Hồi qui ut theo X t1 và X t 2 và tính toán thống kê kiểm định nR . Dưới giả thuyết không β2 = 0, và đối với các mẫu lớn, trị thống kê này sẽ có một phân 2 bố xấp xỉ χ với độ tự do k2 bằng với số ràng buộc trong β2 = 0. Điều này có k2 thể được sử dụng theo cách thông thường để kiểm định giả thuyết không. Wooldridge cũng trình bày một thống kê F tương tự với thống kê kiểm định Wald trong các mô hình đơn phương trình. Tương Quan Chuỗi trong một Mô Hình Hệ Phương Trình* Nếu dữ liệu chuỗi thời gian được sử dụng để ước lượng một mô hình hệ phương trình, thì thông thường các số hạng nhiễu sẽ tương quan chuỗi. Kiểm định LM có thể được sử dụng Ramu Ramanathan 14 Thuc Doan/Hao Thi
  5. Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 13: Các mô hình hệ phương trình để kiểm định cho tương quan chuỗi, nhưng nó, cũng vậy, đòi hỏi thay đổi tương tự với kiểm định đã làm trước đây (xem Wooldridge, 1991). Các bước như sau: Bước 1 Ước lượng mô hình Yt = βXt + ut bằng TSLS và lưu trữ các phần dư uˆt . Bước 2 Hồi qui Xt bởi Zt, các biến trong dạng rút gọn phục vụ như các công cụ, và thu ˆ được các giá trị thích hợp X t . ˆ 2 Bước 3 Hồi qui uˆt theo X t và uˆt-1 , uˆt-2 , , uˆt- p và tính (n – p)R . Tương quan chuỗi bậc p có thể được kiểm định với thủ tục này sử dụng phân phối χ2 với bậc tự do p. Nếu tương quan chuỗi hiện diện, thì việc sử dụng thủ tục TSLS chuẩn không thích hợp, và người ta có thể sử dụng một mô hình hay phương pháp luận được sửa đổi. ĐỊNH DẠNG LẠI MÔ HÌNH Chúng ta đã xem trong Chương 9 và10, đặc biệt trong Phương trình (10.12), tương quan chuỗi là trường hợp đặc biệt của nhiều trường hợp động tổng quát hơn. Một cách dễ dàng để xử lý đó là bao gồm cả các số hạng biến phụ thuộc và độc lập trễ vào trong mô hình. Vì thế, ví dụ, chúng ta có thể bao gồm số hạng Ct-1 và DYt-2 trong Phương trình (13.4) và các số hạng It-1 và Yt-2 trong Phương trình (13.5). Sau đó mô hình sửa đổi sẽ được ước lượng bằng TSLS. THỦ TỤC ƯỚC LƯỢNG SỬA ĐỔI Các phương pháp Hildreth-Lu và Cochrance- Orcutt có thể được sửa đổi để xử lý tương quan chuỗi. Phương pháp sửa đổi này được mô tả bằng mô hình hai phương trình sau, nhưng nguyên tắc thì giống với nguyên tắc mô hình nhiều phương trình: Yt1 = α12Yt2 + β11Xt1 + β12Xt2 + ut (13.17) Yt2 = α21Yt1+ β21X t1+ β23Xt3 + vt (13.18) ut = ρ1ut-1 + εtl (13.19) vt = ρ2 vt-1 + εt2 (13.20) trong đó Y1 và Y2 là những biến nội sinh và X1, X2 và X3 là những biến được xác định trước. Các nhiễu cấu trúc được giả định tuân theo một quá trình AR (1) với các ε là nhiễu trắng. Phiên bản tương tự khác của Phương trình (13.17) được cho bởi: Yt1 − ρ1Yt −1,1 = α12 (Yt 2 − ρ1Yt −1,2 ) + β11(X t1 − ρ1Yt −1,1) + β12 (X t2 − ρ1Yt −1,2 ) + εt1 (13.21) Ramu Ramanathan 15 Thuc Doan/Hao Thi
  6. Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 13: Các mô hình hệ phương trình Thủ tục tìm kiếm Hildreth-Lu và thủ tục tính lặp Cochrance-Orcutt có thể ứng dụng được ở đây, nhưng chú ý rằng bởi vì dạng rút gọn sửa đổi cho Yt2 sẽ chứa các biến trễ X1, X2, và X3, giai đoạn đầu tiên phải bao gồm các yếu tố này như là những biến hồi quy. Vì thế, các bước cho việc ước lượng Phương trình (13.17) như sau: Bước 1 Hồi qui Yt2 theo Xt1, Xt2, Xt3, Xt-1,1, Xt-1,2, và Xt-1,3 và lưu trữ các giá trị dự đoán ˆ Yt 2 Bước 2 Lựa chọn một giá trị cho ρ1 và ước lượng Phương trình (13.21) bằng OLS sử ˆ dụng Yt 2 như một công cụ đối với Yt2. Bước 3 Lập lại bước 2 cho các giá trị khác nhau của ρ1 trong khoảng –1 và +1 và chọn ρ1 sao cho tổng bình phương sai số của Phương trình (13.21) là cực tiểu. Đây là thủ tục tìm kiếm Hildreth-Lu sửa đổi. Kỹ thuật Cochrane-Orcutt cũng giống ˆ với kỹ thuật này ở Chương 9. Sự khác biệt duy nhất đó là Yt 2 được sử dụng thay vì Yt2. Nếu mô hình có các biến phụ thuộc trễ giống như các biến được xác định trước, thì hồi qui giai đoạn đầu tiên cho Yt2 nên bao gồm Yt-1,1 và Yt-2,1 (cũng như, một cách có thể, Yt-1,2 và Yt-2,2) như các biến hồi qui. Để thấy được điều này, giả sử rằng Xt1 thực sự là Yt- 1,1. Thì chúng ta thấy rằng Phương trình (13.23) sẽ có Yt-1,1 và Yt-2,1 bên vế phải, và do đó các thông số này phải được bao gồm như những biến hồi qui trong hồi qui giai đoạn đầu tiên. Fair (1970) đã chỉ ra rằng thủ tục này cho các ước lượng nhất quán của các phương trình cấu trúc. | 13.5 Ví Dụ Thực Nghiệm: Qui Định trong Ngành Công Nghiệp Kính Sát Tròng Trong một nghiên cứu, Haas-Wilson (1987) đã xem xét các tác động của các giới hạn tiểu bang cấm các chuyên viên quang học hoạt động độc lập điều chỉnh giá và chất lượng của kính sát tròng. Một mô hình hai phương trình được sử dụng để liên hệ giá và chất lượng của kính sát tròng, và các thông số được ước lượng bởi bình phương tối thiểu hai giai đoạn. Trước khi tập trung vào công thức thực nghiệm chúng ta hãy xem xét cơ sở nền tảng. Việc mua kính sát tròng gồm 3 bước: (1) một buổi gặp bác sĩ khoa mắt hoặc chuyên viên đo thị lực để khám và kê toa, (2) một buổi khám để đo bán kính độ cong của giác mạc, và (3) mua và đánh giá kính. Ngành công nghiệp kính sát tròng có đặc điểm cạnh tranh nhóm, trong đó nhiều người bán nắm giữ mức độ sức mạnh thị trường nào đó. Một số lượng các tiểu bang đã ban hành những yêu cầu (tức là, những yêu cầu khi mua bán một sản phẩm, chẳng hạn như kính sát tròng, phải được kèm theo việc mua một sản phẩm khác, chẳng hạn như những dịch vụ của một chuyên viên đo thị lực hoặc bác sĩ nhãn khoa) cấm hiệu chỉnh kính sát tròng bởi các chuyên viên quang học độc lập. Vấn Ramu Ramanathan 16 Thuc Doan/Hao Thi
  7. Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 13: Các mô hình hệ phương trình đề đối với việc khám bệnh là liệu những yêu cầu ràng buộc có tạo ra kết quả làm tăng giá kính sát tròng hay không và, nếu đúng như vậy, gia tăng là bao nhiêu. Haas-Wilson phát biểu một mô hình cạnh tranh nhóm trong đó những người bán tối đa hóa lợi nhuận dựa theo giá cả. Bỏ qua các bước trung gian cho mô hình kinh tế lượng (các chi tiết trong bài báo), chúng tôi đưa ra một cách đơn giản ở đây hai phương trình được định dạng (P và QUALW là các biến nội sinh và các biến khác là ngoại sinh): P = f(QUALW, SOFT, FITOPH, FITOPTOM, EXOPH, Y, INPUT, R- FIT, LIC, R-AD, REG) QUALW = g(P, FITOPH, FITOPTOM, SEX, AGE, FAIL, WEARTIME, HOURS, DIRT, DAMAGE, WARP, SOFT, R-FIT, R-AD, LIC, REG) Trong đó P = Giá kính sát tròng QUALW = Chỉ số trọng số của sức khỏe mắt SOFT = 1 cho kính sát tròng mềm, 0 cho loại khác FITOPH = 1 nếu sự hiệu chỉnh được thực hiện bởi một bác sĩ nhãn khoa FITOPTOM = 1 nếu sự hiệu chỉnh được thực hiện bởi một chuyên viên đo thị lực EXOPH = 1 nếu được khám bởi một bác sĩ nhãn khoa Y = Thu nhập INPUT = Giá của các nhập lượng R-FIT = 1 nếu tiểu bang của người tiêu dùng có những giới hạn về hiệu chỉnh bởi các chuyên viên quang học R-AD = 1 nếu tiểu bang của người tiêu dùng giới hạn quảng cáo LIC = 1 nếu tiểu bang yêu cầu giấy phép đối với các chuyên viên quang học REG = Chỉ số của các giới hạn thương mại khác SEX = 1 đối với nam AGE = Tuổi của người tiêu dùng FAIL = 1 nếu người tiêu dùng không thành công trong việc đeo kính sát tròng trước đây WEARTIM = Thời gian đeo kính trước khi buổi khám diễn ra E HOURS = Số giờ trung bình đeo kính trong một ngày DIRT = 1 nếu kính sát tròng bị bẩn DAMAGE = 1 nếu kính sát tròng bị hỏng WARP = 1 nếu kính sát tròng bị méo mó Ramu Ramanathan 17 Thuc Doan/Hao Thi
  8. Chương trình Giảng dạy Kinh tế Fulbright Phương pháp phân tích Nhập môn kinh tế lượng với các ứng dụng Niên khóa 2003-2004 Bài đọc Chương 13: Các mô hình hệ phương trình Mô hình này được ước lượng với 354 quan sát được thu thập bởi Hiệp Hội Thương Mại Liên Bang trong suốt thời kỳ 1976-1979 từ những người tiêu dùng trong 18 khu vực đô thị. Các ước lượng bình phương tối thiểu hai giai đoạn của các thông số như sau (các sai số chuẩn nằm trong ngoặc đơn): pˆ = 167,30 − 0,64QUALW + 53,92SOFT +17,87 FITOPH + 2,72FITOPTOM (43,3) (0,9) (6,5) (10,8) (13,9) + 28,48EXOPH − 0,01Y − 18,52INPUT + 17,29R - FIT − 4,45LIC (13,8) (0,0) (39,0) (7,9) (7,3) R2 = 0.29 T = 354 F = 12.73 QUALW = 8,02 – 0,08P + 3,39FITOPH – 0,06FITOPTOM – 3,61SEX (9,1) (0,1) (2,7) (2,0) (1,6) – 0,07AGE – 283FAIL – 0,83WEARTIME – 0,83HOURS (0,1) (1,9) (0,3) (0,5) – 1,65DIRT + 1,03DAMAGE + 0,07WARP + 7,85SOFT (1,0) (0,9) (1,1) (4,1) – 0,10R-FIT + 0,06R-AD – 0,53LIC + 0,53REG (1,5) (2,3) (1,3) (0,7) R2 = 0.14 T = 354 F = 3.51 Giả thuyết không của vấn đề chính đang quan tâm là hệ số R-FIT bằng không trong phương trình giá. Giả thuyết này bị bác bỏ ở mức 5%, thể hiện rằng các yêu cầu hạn chế ảnh hưởng một cách có ý nghĩa lên giá kính sát tròng. Trong các tiểu bang giới hạn việc kê toa kính sát tròng bởi những chuyên viên quang học, giá được kỳ vọng sẽ cao hơn, so với trung bình, 17,29 đô la. Tác giả cũng sử dụng mô hình logarit kép đối với giá và ước lượng rằng giá kính sát tròng cao hơn 8% tại các bang với lệnh cấm. Cũng vậy, kết quả gợi ý rằng chất lượng, được đo như là sức khỏe cho mắt, không ảnh hưởng một cách có ý nghĩa lên giá. Những loại giới hạn khác, chẳng hạn như những giới hạn sử dụng tên thương mại và số lượng các văn phòng chi nhánh mà một người đo thị lực có thể điều hành, cũng được đi kèm với giá kính sát tròng cao hơn. Những ước lượng phương trình chất lượng gợi ý rằng những yêu cầu hạn chế không ảnh hưởng một cách có ý nghĩa lên chất lượng. Cuối cùng, chất lượng được cung cấp bởi những chuyên viên quan học không khác biệt một cách có ý nghĩa với chất lượng được cung cấp bởi các bác sĩ nhãn khoa và những chuyên viên đo thị lực. Quảng cáo và những giới hạn khác không thể hiện ảnh hưởng lên chất lượng một cách có ý nghĩa. Xem Wunnava và Mehdi (1994) cho một ví dụ ứng dụng khác của thủ tục bình phương tối thiểu hai giai đoạn. Ramu Ramanathan 18 Thuc Doan/Hao Thi