Bài giảng Thống kê trong kinh doanh và kinh tế - Chương 9: Tương quan, hồi qui tuyến tính - Chế Ngọc Hà

Khái niệm:  được gọi là đại lượng đo lường mối tương
quan tuyến tính của 2 đại lượng ngẫu nhiên X và Y nếu:
-1   1
*  < 0: X, Y có mối liên hệ nghịch
*  > 0: X, Y có mối liên hệ thuận
*  = 0: X, Y không có mối liên hệ.
*: càng lớn thì X, Y có mối liên hệ càng chặt chẽ. 
HỒI QUI TUYẾN TÍNH ĐƠN GIẢN
• E(Y/X) = f(X) : Phương trình hồi qui
• E(Y/X) =  + X: Phương trình hồi qui tuyến tính
• Y =  + X + U : Giá trị thực của Y
Trong đó:
• X: biến giải thích (độc lập);
• Y: biến được giải thích (phụ thuộc)
• : Tham số chặn
• : Tham số của biến
• U: Yếu tố ngẫu nhiên
• X,Y không có mối quan hệ hàm số mà có mối quan hệ
nhân quả và thống kê 
pdf 30 trang hoanghoa 08/11/2022 4260
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Thống kê trong kinh doanh và kinh tế - Chương 9: Tương quan, hồi qui tuyến tính - Chế Ngọc Hà", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

File đính kèm:

  • pdfbai_giang_thong_ke_trong_kinh_doanh_va_kinh_te_chuong_9_tuon.pdf

Nội dung text: Bài giảng Thống kê trong kinh doanh và kinh tế - Chương 9: Tương quan, hồi qui tuyến tính - Chế Ngọc Hà

  1. II.HỒI QUI TUYẾN TÍNH BỘI E(Y/X1,X2, , Xk) = + 1X1 + 2X2 + + kXk Y = + 1X1 + 2X2 + + kXk + U 1. Xây dựng mô hình hồi qui mẫu: Mục tiêu là ta cần ước lượng , 1, 2, k, giả sử đó là a,b1,b2, bk,. Chọn n cặp quan sát (x1i, x2i, xki,yi) từ X và Y: yi a b1x1i b2x2i bkxki ei : Giá trị thực tế yˆi a b1x1i b2x2i bkxki : Giá trị lý thuyết n 2 (yi a b1x1i bkxki ) min i 1 10
  2. II.HỒI QUI TUYẾN TÍNH BỘI Ví dụ, Tốc độ tăng nền kinh tế (Y) phụ thuộc vào tốc độ tăng của nông nghiệp (X1), tốc độ tăng trưởng của kim ngạch xuất khẩu (X2) và tỷ lệ lạm phát (X3) được thu thập ở 48 nước: Y(%) NN(%) XK(%) LP(%) Y(%) NN(%) XK(%) LP(%) Y(%) NN(%) XK(%) LP(%) 1,3 3,4 -2,7 13,0 8,0 3,1 10,9 37,3 5,6 3,9 6,4 13,9 1,0 1,4 -6,0 10,5 6,5 3,3 -0,6 8,9 6,9 1,3 11,6 6,4 0,4 0,1 -3,6 15,9 0,2 0,1 8,4 29,5 -4,6 0,8 -9,8 21,5 4,9 1,8 13,6 3,2 7,8 5,3 10,4 8,1 -2,6 1,7 -6,6 6,7 9,8 5,6 27,3 5,4 2,5 2,3 4,9 22,6 1,1 3,9 3,8 7,7 -2,1 2,2 2,6 5,2 -0,2 3,1 7,9 20,2 4,6 3,0 -3,5 8,6 2,0 2,3 -9,5 8,7 6,1 10,3 -19,0 -1,3 -0,6 2,5 2,0 11,5 5,8 3,0 4,4 1,4 2,9 -0,6 5,4 7,5 8,2 1,9 3,8 7,8 5,2 2,9 9,2 3,0 4,1 2,3 8,7 9,5 4,1 0,9 1,3 5,6 -1,1 -2,3 -6,3 14,9 -5,0 1,2 -2,0 1,1 12,6 7,9 11,7 3,8 0,2 0,3 12,0 20,3 2,1 2,7 5,6 11,2 4,1 2,8 -0,9 9,9 1,1 1,4 -7,2 19,8 7,7 3,0 2,0 8,9 0,6 2,8 -2,1 23,3 -12,0 4,8 -5,5 8,6 9,3 3,3 6,2 7,5 2,0 0,5 -3,1 33,5 -1,6 -0,4 -2,5 11,3 -1,7 2,0 -1,7 18,2 0,0 0,4 6,9 32,6 0,5 1,9 1,6 19,0 5,8 4,7 -0,2 2,1 -2,6 -1,3 3,4 7,7 2,2 -3,5 4,7 1,9 3,9 -3,9 -2,5 3,4 -3,4 7,9 -7,9 45,4 11
  3. II.HỒI QUI TUYẾN TÍNH BỘI Regression Statistics Multiple R 0,6088 R Square 0,3707 Adjusted R Square 0,3278 Standard Error 3,6899 Observations 48 df SS MS F Significance F Regression 3 352,861 117,621 8,639 0,000127 Residual 44 599,085 13,616 Total 47 951,947 Coefficients Standard Error t Stat Pvalue Lower 95% Upper 95% Intercept 2,033 0,993 2,047 0,047 0,032 4,035 NN 0,501 0,206 2,435 0,019 0,086 0,915 XK 0,268 0,069 3,888 0,000 0,129 0,407 LP -0,105 0,053 -1,973 0,055 -0,212 0,002 12
  4. II.HỒI QUI TUYẾN TÍNH BỘI 2. Ý nghĩa các tham số của Hồi qui: • Dấu của i: Cho biết mối quan hệ thuận nghịch giữa Y và Xi • Độ lớn của i: Cho biết mức độ tác động mạnh, yếu của Xi đến Y • : Có ý nghĩa tùy từng trường hợp cụ thể. 3. Ước lượng hệ số i: Ước lượng sự ảnh hưởng của Xi đến Y i (bi tn k 1, / 2Sbi ) (a tn k 1, / 2Sa) 13
  5. II.HỒI QUI TUYẾN TÍNH BỘI 4. Kiểm định từng tham số hồi qui: Kiểm định Y có phụ thuộc vào biến xi hay không: H0 : i 0 bi t tn k 1, / 2 BB H0 H1 : i 0 Sbi 5. Hệ số xác định: R2 là hệ số nhằm xác định sự biến động của Y phụ thuộc bao nhiêu % vào sự biến động của X1, X2, Xk. 2 2 2 2 2 (yi y) (yi yˆi) (yˆi y) (yˆi y) ei SSR SSE SST SSR SSE R2 1 SST SST 14
  6. II.HỒI QUI TUYẾN TÍNH BỘI 6. Hệ số xác định đã điều chỉnh: 2 SSR/(n k 1) n 1 R 1 (1 R2)( ) SST /(n 1) n k 1 7. Kiểm định sự phù hợp của mô hình: H0 : 1 2 k 0 MSR SSR/k n (k 1) R2 F . MSE SSE/n (k 1) k 1 R2 F Fk,(n k 1), BB H0 15
  7. II.HỒI QUI TUYẾN TÍNH BỘI Tóm tắt kết quả hồi qui Tốc độ tăng kinh tế - Y(%) Biến độc lập ĐVT Dấu kỳ Hệ số P vọng Tốc độ tăng nông nghiệp (NN) % + 0,501 0,019 Tốc độ tăng xuất khẩu (XK) % + 0,268 0,000 Lạm phát (LP) % - -0,105 0,055 Hệ số tự do 2,033 0,047 R2=0,37; Sig.F=0,000127, n=48 16
  8. II.HỒI QUI TUYẾN TÍNH BỘI Trình tự giải thích kết quả Hồi qui: • Khẳng định mô hình có ý nghĩa. Thông qua giá trị Sig.F • Trình bày mức độ ảnh hưởng của các biến độc lập đến biến phụ thuộc • Kiểm tra mức ý nghĩa thống kê của từng biến độc lập, giải thích sự ảnh hưởng của từng biến độc lập đến biến phục thuộc. Chú ý đến dấu, dấu kỳ vọng và độ lớn của hệ số hồi qui. 17
  9. III.MỘT SỐ DẠNG HÀM Các trường hợp mở rộng: • Biến độc lập là biến định tính: Mô hình hồi qui với biến giả • Biến phụ thuộc là biến định tính: Phân tích nhân tố • Trường hợp phương trình hồi qui phi tuyến tính đối với biến. 18
  10. III.MỘT SỐ DẠNG HÀM 1. Một biến độc lập định tính: Hồi qui với biến giả. 1.1.Biến giả có 2 phạm trù: Xây dựng mô hình so sánh tiền lương của công nhân làm việc trong khu vực tư nhân và quốc doanh. E(Y/D) = + D • Y: Tiền lương • D = 1: Công nhân khu vực tư nhân • D = 0: Công nhân khu vực quốc doanh E(Y/D=0) = : Lương công nhân khu vực quốc doanh E(Y/D=1) = +: Lương công nhân khu vực tư nhân 19
  11. III.MỘT SỐ DẠNG HÀM Ví dụ: Lương 28 32 35 27 25 37 29 34 33 30 (trđ/năm) Khu vực 0 1 1 0 0 1 0 1 1 0 Yˆ 27,8 6,4D 20
  12. III.MỘT SỐ DẠNG HÀM 1.2.Biến giả có 3 phạm trù: Mô hình so sánh lương công nhân khu vực tư nhân, liên doanh và quốc doanh. E(Y/D1,D2) = + 1D1 +2D2 • D1 = 1: Công nhân khu vực tư nhân D1 = 0: Công nhân khu vực khác • D2 = 1: Công nhân khu vực liên doanh D2 = 0: Công nhân khu vực khác E(Y/D1=1,D2=0) = + 1: Lương CN khu vực TN E(Y/D1=0,D2=1) = + 2: Lương CN khu vực LD E(Y/D1=0,D2=0) = : Lương CN khu vực QD 21
  13. III.MỘT SỐ DẠNG HÀM 1.3.Một biến giả và 1 biến định lượng: E(Y/X,D) = + 1D1 +2X • D = 1: Công nhân khu vực tư nhân • D = 0: Công nhân khu vực quốc doanh • X : Bậc thợ của công nhân Lương trung bình công nhân khu vực tư nhân E(Y/X,D=0) = + 2X: Lương trung bình công nhân khu vực quốc doanh E(Y/X,D=1) = ( +1) + 2X: 22
  14. III.MỘT SỐ DẠNG HÀM 2. Hàm log – log: Xét hàm Cobb – Douglas: Y K1L2eU ln Y ln 1lnK 2 lnL U • Y: Sản lượng • K: Vốn • L: Lao động • 1+2: Đo lường hiệu quả theo qui mô • 1+2=1: Hiệu quả không đổi theo qui mô • 1+2<1: Hiệu quả giảm theo qui mô • 1+2=1: Hiệu quả tăng theo qui mô 23
  15. III.MỘT SỐ DẠNG HÀM Ý nghĩa của hệ số 1, 2 dY Y dY Y     1 dK K YK 2 dL L YL • 1: Hệ số co giãn riêng phần của sản lượng theo vốn. Đo lường % biến động của sản lượng nếu vốn tăng lên 1% đơn vị. • 2: Hệ số co giãn riêng phần của sản lượng theo lao động. Đo lường % biến động của sản lượng nếu lao động tăng lên 1% đơn vị. 24
  16. III.MỘT SỐ DẠNG HÀM Ví dụ: Nông nghiệp của Đài Loan 1957 – 1972: • lnY = -3,34 + 0,49lnK + 1,50lnL • Y: GNP (triệu USD) • K: Vốn (triệu USD) • L: Ngày công lao động (triệu ngày) Ví dụ: Hàm cầu lượng cà phê: • lnQ = 0,78 - 0,25lnPcà phê + 0,38lnPtrà • Q: Lượng cà phê sử dụng mỗi ngày (cân Anh) • Pcà phê: Giá cà phê/cân Anh • Ptrà: Giá trà/cân Anh 25
  17. III.MỘT SỐ DẠNG HÀM 3. Mô hình log – lin: dY Y ln Y X U  dX • : Đo lường 100% thay đổi của Y khi X tăng lên 1 đơn vị Ví dụ: GDP đầu người giai đoạn 1969 – 1983 • ln(GDP) = 6,9636 + 0,0269t • GDP tăng trưởng 2,69% mỗi năm • t=0 (1969): GDP 1.057 tỷ USD 26
  18. III.MỘT SỐ DẠNG HÀM 4. Mô hình lin - log: dY Y ln X U  dX X • : Đo lường 1% thay đổi của Y khi x tăng lên 1% Ví dụ: Mô hình GNP và lượng cung tiền: • Y = -16.329 + 2.584,8lnX • Y: GNP (tỷ USD) • X: Lượng cung tiền (tỷ USD) • Nếu cung tiền tăng 1% thì GNP tăng 25,848 tỷ USD 27
  19. III.MỘT SỐ DẠNG HÀM 5. Mô hình nghịch đảo: 1 Y  U x Y X Đường cong phillips: • Y: Tỷ lệ thay đổi của tiền lương • Y: Tỷ lệ thất nghiệp Ví dụ: Dữ liệu của Anh 1950 – 1966 • Y = -1,4282 + 8,7243 (1/X) • Khi tỷ lệ thất nghiệp tăng đến vô hạn, % giảm trong tiền lương sẽ không vượt quá 1,43% 28